【高阶数据结构】红黑树 {概念及性质;红黑树节点的定义;红黑树插入操作详细解释;红黑树的验证}

红黑树

一、红黑树的概念

红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

在这里插入图片描述

AVL树 VS 红黑树

  • 红黑树是一种特化的AVL树,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。

  • AVL树要求每棵子树的左右高度差不超过1,是严格平衡;而红黑树要求最长路径不超过最短路径的2倍,是接近平衡。

  • 而红黑树是一种AVL树的变体,它要求最长路径不超过最短路径的2倍,左右子树高差有可能大于 1。所以红黑树不是严格意义上的平衡二叉树(AVL),但对之进行平衡的代价较低, 其平均统计性能要强于 AVL

  • 相对而言,插入或删除同样的数据,AVL树旋转的更多,而红黑树则旋转的更少效率相对较高


二、红黑树的性质

红黑树是每个结点都带有颜色属性的二叉查找树,颜色或红色或黑色。 在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:

  • 性质1. 结点是红色或黑色。

  • 性质2. 根结点是黑色。

  • 性质3. 每个红色结点的两个子结点都是黑色。(每条路径上不能有两个连续的红色结点)

  • 性质4. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。 (每条路径上的黑色节点数量相同)

  • 性质5. 所有NIL结点都是黑色的。(NIL节点即空结点)

这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。

是性质3导致路径上不能有两个连续的红色结点确保了这个结果。最短的可能路径都是黑色结点,最长的可能路径有交替的红色和黑色结点。因为根据性质4所有路径都有相同数目的黑色结点,这就表明了没有路径能多于任何其他路径的两倍长。

思考:新插入的节点应该设为黑色还是红色?

  • 如果将新插入的节点设为黑色,不管插到那条路径都必然违反性质4。

  • 如果将新插入的节点设为红色:如果父节点是红色则违反性质3,需要进行调整;如果父节点是黑色就正常插入,无需调整。

  • 对比两种情况,最终选择将新插入的节点设为红色。


三、红黑树节点的定义

enum Color{
  RED,
  BLACK
};

template <class K, class V>
struct RBTreeNode{
  RBTreeNode<K,V> *_left;
  RBTreeNode<K,V> *_right;
  RBTreeNode<K,V> *_parent;

  pair<K,V> _kv;
  Color _color; //颜色属性,红或黑
  RBTreeNode(const pair<K,V> &kv=pair<K,V>(), Color color = RED)
    :_left(nullptr),
    _right(nullptr),
    _parent(nullptr),
    _kv(kv),
    _color(color)
  {}
};

四、红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点

  2. 检测新节点插入后,红黑树的性质是否造到破坏。因为新节点的默认颜色是红色,因此:

    • 如果新插入的节点是根节点,需要将节点变为黑色以满足性质2。
    • 如果父节点是黑色的,没有违反红黑树的任何性质,则不需要调整;
    • 但如果父节点颜色为红色时,就违反了性质3:路径上不能有两个连续的红色结点。此时需要对红黑树分情况来讨论:

在讲解情况三、四、五之前,先说明一下:

  • cur为当前节点(关注节点),p(parent)为父节点,g(grandparent)为祖父节点,u(uncle)为叔叔节点;
  • cur不一定就是新插入的节点,也有可能是因为 cur 的子树在调整的过程中将 cur 节点的颜色由黑色改成红色。

4.1 情况一:u存在且为红

情况一: cur为红,p为红,g为黑,u存在且为红

抽象分析:

在这里插入图片描述

  1. 因为cur和p都为红色违反性质3,所以一定要把p变为黑色。
  2. 但只变p又违反性质4各路径上黑色节点的数量不同,所以要把u也变为黑色。
  3. 但原来所有路径上只有1个黑色节点(可见的)而现在变为2个。如果g树是子树,又会使整棵树违反性质4。所以要把g变为红色。
  4. g的父节点也可能是红色,所以要继续向上调整。

解决方式:变色并继续向上调整

  1. 将p,u都改为黑色,g改为红色;
  2. 如果g不为根,就把g当成cur继续向上调整;
  3. 如果g为根,就把g变为黑色。性质2:根节点是黑色的。

具体分析:

cur就是新插入的节点:

在这里插入图片描述

cur节点原来是黑色之后又被调整为红色:

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。


4.2 情况二:u不存在/u存在且为黑(单旋)

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋)

抽象分析:
在这里插入图片描述

  1. 因为cur和p都为红色违反性质3,所以一定要把p变为黑色。
  2. 但只变p使左路黑节点+1违反性质4,因此还要以g为轴点右单旋,使左路黑节点-1。
  3. 但此时由于右单旋使右路黑节点+1,所以要将g变为红色,右路黑节点-1。最终满足性质4。

解决方式:单旋+变色

  1. 如果p为g的左孩子,cur为p的左孩子(左左),则对g进行右单旋;
  2. 如果p为g的右孩子,cur为p的右孩子(右右),则对g进行左单旋;
  3. p、g变色–p变黑色,g变红色。
  4. 完成旋转变色后每条路径的黑节点数量相同且与插入前也相同,并且根节点为黑色不需要继续往上处理。

具体分析:u 的情况有两种

uncle节点不存在:

如果 u 节点不存在,则 cur 一定是新插入节点,因为如果 cur 不是新插入节点,则 cur 和 p 一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。

在这里插入图片描述

uncle节点存在且为黑色:

如果 u 节点存在且为黑色,那么 cur 节点原来的颜色也一定是黑色的,现在看到其是红色的原因是因为 cur 的子树在调整的过程中将 cur 节点的颜色由黑色改成红色。

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。


4.3 情况三:u不存在/u存在且为黑(双旋)

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋)

抽象图:
在这里插入图片描述
情况三先以p为轴点左单旋,转换为情况二。

解决方式:双旋+变色

  1. p为g的左孩子,cur为p的右孩子(左右),则先对p做左单旋,再对g做右单旋;
  2. p为g的右孩子,cur为p的左孩子(右左),则先对p做右单旋,再对g做左单旋;
  3. cur、g变色–cur变黑色,g变红色。
  4. 完成旋转变色后每条路径的黑节点数量相同且与插入前也相同,并且根节点为黑色不需要继续往上处理。

具体分析:

uncle节点不存在

在这里插入图片描述

uncle节点存在且为黑色:

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。

总结:

  • 二叉树插入操作的难点在于通过变色和旋转操作恢复红黑树的性质,性质得到满足红黑树就能做到近似平衡:最长路径不超过最短路径的两倍。
  • 恢复的最终目的:1.关注子树满足红黑树的所有性质 2.插入前后关注子树每条路径的黑节点数量不变(保证整棵树的性质4)

4.4 实现代码

template <class K, class V>
bool RBTree<K,V>::Insert(const pair<K,V> &kv)
{
  //1.按照二叉搜索的树规则插入新节点
  if(_root == nullptr)
  {
    _root = new Node(kv, BLACK); //性质2:根节点是黑色的
    return true;
  }

  Node *cur = _root;
  Node *parent = nullptr;
  while(cur != nullptr)
  {
    if(kv.first > cur->_kv.first)
    {
      parent = cur;
      cur = cur->_right;
    }
    else if(kv.first < cur->_kv.first)
    {
      parent  = cur;
      cur = cur->_left;
    }
    else{
      return false;
    }
  }
    
  cur = new Node(kv,RED); //新插入的节点是红色的
  if(kv.first > parent->_kv.first)
  {
    parent->_right = cur;
  }
  else{
    parent->_left = cur;
  }
  cur->_parent = parent;
  
  //2.检测新节点插入后,红黑树的性质是否造到破坏。
  //如果上一次循环中grandparent为根节点,此次循环parent == nullptr,结束调整。
  //如果其父节点的颜色是黑色,没有违反红黑树的任何性质,则不需要调整;
  while(parent != nullptr && parent->_color == RED) 
  {
    Node *grandparent = parent->_parent;
    //增加断言,是为了方便找出一般错误。
    assert(grandparent != nullptr); //因为父节点是红色的,所以祖父节点一定不为空,性质2
    assert(grandparent->_color == BLACK); //因为父节点是红色的,所以祖父节点一定是黑色,性质3

    Node *uncle = grandparent->_left;
    if(parent == grandparent->_left)
      uncle = grandparent->_right;

    if(uncle != nullptr && uncle->_color == RED) //情况一:uncle存在且为红
    {
      //p,u变黑,g变红,继续向上调整。
      parent->_color = uncle->_color = BLACK;
      grandparent->_color = RED;
      cur = grandparent;
      parent = cur->_parent;
    }
    else //情况二、三:uncle不存在或uncle存在且为黑
    {
      //需要进行旋转变色处理,先要判断旋转方式。
      if(parent == grandparent->_left)
      {
        if(cur == parent->_left) //左左
        {
          RotateR(grandparent);
          parent->_color = BLACK;
          grandparent->_color = RED;
        }
        else{ //左右
          RotateL(parent);
          RotateR(grandparent);
          cur->_color = BLACK;
          grandparent->_color = RED;
        }
      }
      else{
        if(cur == parent->_right) //右右
        {
          RotateL(grandparent);
          parent->_color = BLACK;
          grandparent->_color = RED;
        }
        else{ //右左
          RotateR(parent);
          RotateL(grandparent);
          cur->_color = BLACK;
          grandparent->_color = RED;
        }
      }
      break; //完成旋转变色后每条路径的黑节点数量相同且根节点为黑色不需要继续往上处理。
    } //end of else
  } //end of while
    
  //如果上一次循环中grandparent为根节点,循环结束后要将根节点再改为黑色,性质2。
  if(cur == _root)
    cur->_color = BLACK;

  return true;

}

五、红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
bool IsValidRBTree(){
  //空树也是红黑树
  if(_root == nullptr) return true;
  //检查性质2:
  if(_root->_color != BLACK)
  {
    cout << "违反性质2:根节点不为黑色!" << endl;
    return false;
  }
  //检查性质3,4:
  int benchmark = 0;
  return PrevCheck(_root, 0, benchmark);
}

//blacknum:用于记录当前路径的黑色节点个数,不能传引用。
//benchmark:用于记录第一条路径的黑色节点个数。需要传引用,返回给上层递归。
bool _IsValidRBTree(Node *root, int blacknum, int &benchmark){
  if(root == nullptr)
  {
    if(benchmark == 0) //表示第一条路径遍历完
    {
      benchmark = blacknum; //记录第一条路径的黑色节点个数
      return true;
    }
    else{
      if(blacknum != benchmark) //如果其他路径的blacknum与第一条路径不同,说明违反性质4
      {
        cout << "违反性质4:从任意节点到每个叶子节点的所有路径都包含相同数目的黑色节点!" << endl;
        return false;
      }
      else{
        return true;
      }
    }
  }
    
  //检查性质3:
  if(root->_color == RED && root->_parent->_color == RED)
  {
    cout << "违反性质3:路径上有两个连续的红色节点!" << endl;
    return false;
  }

  if(root->_color == BLACK)
  {
    ++blacknum; 
  }
  return PrevCheck(root->_left, blacknum, benchmark)
      && PrevCheck(root->_right, blacknum, benchmark);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/102989.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

联发科MTK6762/MT6762核心板_安卓主板小尺寸低功耗4G智能模块

MT6762安卓核心板是一款基于MTK平台的高性能智能模块&#xff0c;是一款工业级的产品。该芯片也被称为Helio P22。这款芯片内置了Arm Cortex-A53 CPU&#xff0c;最高可运行于2.0GHz。同时&#xff0c;它还提供灵活的LPDDR3/LPDDR4x内存控制器&#xff0c;此外&#xff0c;Medi…

Window11下载安装jdk8-jdk11与环境变量的配置

目录 一、下载jdk 二、安装jdk 三、配置环境变量 四、检查JDK是否配置成功 一、下载jdk jdk8下载链接&#xff1a;请点击网址 jdk11下载链接&#xff1a;请点击网址 二、安装jdk 按照提示一步一步安装即可。 默认安装位置&#xff1a;C:\Program Files\Java 三、配置…

VPG算法

VPG算法 前言 首先来看经典的策略梯度REINFORCE算法&#xff1a; 在REINFORCE中&#xff0c;每次采集一个episode的轨迹&#xff0c;计算每一步动作的回报 G t G_t Gt​&#xff0c;与动作概率对数相乘&#xff0c;作为误差反向传播&#xff0c;有以下几个特点&#xff1a; …

对象模型和this指针(个人学习笔记黑马学习)

1、成员变量和成员函数 #include <iostream> using namespace std; #include <string>//成员变量和成员函数分开存储class Person {int m_A;//非静态成员变量 属于类的对象上的static int m_B;//静态成员变量 不属于类的对象上void func() {} //非静态成员函数 不…

nginx调优(二)

目录 一、event模块: 1.最大并发连接数&#xff1a; 2.选择事件驱动&#xff1a; 3.互斥锁&#xff1a; 4.网络多连接&#xff1a; 二、http模块&#xff1a; 1.server块 基于域名构建虚拟主机&#xff1a; 1.1 指定子配置文件&#xff1a; 1.2 编写子配置文件&#xff1a; …

什么是盒子模型

什么是盒子模型 盒子模型&#xff0c;也可以称为框模型。 所有 HTML 元素可以看作盒子。在 CSS 中&#xff0c;“box model” 这一术语是用来设计和布局时使用。 CSS 盒模型本质上是一个盒子&#xff0c;封装周围的 HTML 元素&#xff0c;它包括&#xff1a;边距&#xff0c…

Lnmp架构-Redis

网站&#xff1a;www.redis.cn redis 部署 make的时候需要gcc和make 如果在纯净的环境下需要执行此命令 [rootserver3 redis-6.2.4]# yum install make gcc -y 注释一下这几行 vim /etc/redis/6739.conf 2.Redis主从复制 设置 11 是master 12 13 是slave 在12 上 其他节…

C. Queries for the Array - 思维

分析&#xff1a; 分析出现矛盾的地方&#xff0c;也就是可能遇到0&#xff0c;并且已有字符串的长度小于等于1&#xff0c;另一种情况就是&#xff0c;遇到了1并且已有字符串不是排好序的&#xff0c;或者遇到了0已有字符串是排好序的&#xff0c;那么可以遍历字符串&#xff…

数据艺术:精通数据可视化的关键步骤

数据可视化是将复杂数据转化为易于理解的图表和图形的过程&#xff0c;帮助我们发现趋势、关联和模式。同时数据可视化也是数字孪生的基础&#xff0c;本文小编带大家用最简单的话语为大家讲解怎么制作一个数据可视化大屏&#xff0c;接下来跟随小编的思路走起来~ 1.数据收集和…

Ubuntu18.04版本下配置ORB-SLAM3和数据集测试方法

文章目录 环境说明必要配置一、Pangolin源码和库文件下载依赖安装和编译安装 二、Eigen3源码和库文件下载编译安装 三、Opencv源码和库文件下载编译安装 四、DBoW2 和 g2o五、boost源码和库文件下载编译安装 六、libssl-dev七、ORB-SLAM3源码和库文件下载编译安装 数据集测试参…

使用Python对数据的操作转换

1、列表加值转字典 在Python中&#xff0c;将列表的值转换为字典的键可以使用以下代码&#xff1a; myList ["name", "age", "location"] myDict {k: None for k in myList} print(myDict) 输出&#xff1a; {name: None, age: None, loca…

大数据组件-Flume集群环境的启动与验证

&#x1f947;&#x1f947;【大数据学习记录篇】-持续更新中~&#x1f947;&#x1f947; 个人主页&#xff1a;beixi 本文章收录于专栏&#xff08;点击传送&#xff09;&#xff1a;【大数据学习】 &#x1f493;&#x1f493;持续更新中&#xff0c;感谢各位前辈朋友们支持…

4.(Python数模)0-1规划

Python解决0-1规划问题 参考下面文章 源代码 import pulp # 导入 pulp 库# 主程序 def main():# 投资决策问题&#xff1a;# 公司现有 5个拟投资项目&#xff0c;根据投资额、投资收益和限制条件&#xff0c;问如何决策使收益最大。"""问题建模&#x…

【MySQL】4、MySQL备份与恢复

备份的主要目的是灾难恢复&#xff0c;备份还可以测试应用、回滚数据修改、查询历史数据、审计等 MySQL日志管理 MySQL 的日志默认保存位置为 /usr/local/mysql/data #配置文件 vim /etc/my.cnf 日志的分类 常见日志有&#xff1a; 错误日志&#xff0c;一般查询日志&…

c#继承(new base)的使用

概述 C#中的继承是面向对象编程的重要概念之一&#xff0c;它允许一个类&#xff08;称为子类或派生类&#xff09;从另一个类&#xff08;称为父类或基类&#xff09;继承属性和行为。 继承的主要目的是实现代码重用和层次化的组织。子类可以继承父类的字段、属性、方法和事…

专业的视觉特效处理包,FxFactory 8 Pro for Mac助您打造精彩视频

FxFactory 8 Pro for Mac是一款强大的视觉特效处理包&#xff0c;专门为Mac用户设计。它集成了超过200种高质量的视觉效果和过渡效果&#xff0c;可以轻松地应用于各种视频项目中。该软件提供了一个直观的界面&#xff0c;用户可以通过简单拖放操作将特效应用到视频片段上。它支…

MySQL索引,事务和存储引擎

一、索引 1、索引的概念 ●索引是一个排序的列表&#xff0c;在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址&#xff08;类似于C语言的链表通过指针指向数据记录的内存地址&#xff09;。 ●使用索引后可以不用扫描全表来定位某行的数据&#xff0c;而是先…

SpringCloudAlibaba Gateway(一)简单集成

SpringCloudAlibaba Gateway(一)简单集成 随着服务模块的增加&#xff0c;一定会产生多个接口地址&#xff0c;那么客户端调用多个接口只能使用多个地址&#xff0c;维护多个地址是很不方便的&#xff0c;这个时候就需要统一服务地址。同时也可以进行统一认证鉴权的需求。那么服…

75 # koa 基本逻辑实现以及属性的扩展

准备工作 新建自己的 kaimo-koa 文件夹&#xff0c;结构如下&#xff1a; lib application.js&#xff1a;创建应用context.js&#xff1a;上下文request.js&#xff1a;koa 中自己实现的 request 的对象response.js&#xff1a;koa 中自己实现的 response 的对象 package.js…

soundtouch库的编译与使用

源码下载 https://gitlab.com/soundtouch/soundtouch/-/archive/2.1.2/soundtouch-2.1.2.tar.bz2 SDK配置 使用vs逐个打开source下指定的三个项目文件&#xff0c;修改SDK&#xff0c;因为可能库中使用的是8.0&#xff0c;你使用的10.0 编译准备 在编译soundtouch动态库时要…
最新文章