【OpenCV】车牌自动识别算法的设计与实现

写目录

  • 一. 🦁 设计任务说明
    • 1.1 主要设计内容
      • 1.1.1 设计并实现车牌自动识别算法,基本功能要求
      • 1.1.2 参考资料
      • 1.1.3 参考界面布局
    • 1.2 开发该系统软件环境及使用的技术说明
    • 1.3 开发计划
  • 二. 🦁 系统设计
    • 2.1 功能分析
      • 2.1.1 车辆图像获取
      • 2.1.2 车牌定位
      • 2.1.3 车牌字符分割
      • 2.1.4 车牌字符识别
    • 2.2 部分功能代码实现
    • 2.3 概要设计
    • 2.4 详细设计
      • 2.4.1 读取图像
      • 2.4.2 降噪
      • 2.4.3 二值化
      • 2.4.4 将图像边缘连接为一个整体
      • 2.4.5 查找车牌(矩形区域)
      • 2.4.6 图形修正
      • 2.4.7 颜色识别
      • 2.4.8 车牌部分二值化
      • 2.4.9 字符分割(投影法)
      • 2.4.10 匹配模板
  • 三. 🦁 程序运行结果
  • 四. 🦁 算法性能
  • 五. 🦁 总结

在这里插入图片描述

一. 🦁 设计任务说明

1.1 主要设计内容

1.1.1 设计并实现车牌自动识别算法,基本功能要求

Ⅰ. 对给定的包含有汽车车牌的照片进行处理,利用图像分割算法将目标从背景中分离出来。
Ⅱ. 对目标图像进行合适的处理,然后利用Tesseract库实现车牌号码的识别,将结果输出。
Ⅲ. 要求提供比较友好的用户接口,可以对新的图片导入到系统中进行处理,并将结果返回给用户。
Ⅳ. 要求处理过程的自动化,即输入图像,自动输出车牌信息,无需人去干预。

1.1.2 参考资料

Ⅰ. OpenCV官方参考文档
Ⅱ. Github网站
Ⅲ. 文字识别可以用Tesseract库实现,也可以用其他方式实现

1.1.3 参考界面布局

在这里插入图片描述

1.2 开发该系统软件环境及使用的技术说明

PyQt5:5.11.3
opencv-python:4.2

1.3 开发计划

在这里插入图片描述

二. 🦁 系统设计

2.1 功能分析

2.1.1 车辆图像获取

车辆图像获取是车牌识别的第一步,也是很重要的一步,车辆图像的好坏对后面的工作有很大的影响。如果车辆图像的质量太差,连人眼都没法分辨,那么肯定不会被机器所识别出来。车辆图像都是在实际现场拍摄出来的,实际环境情况比较复杂,图像受天气和光线等环境影响较大,在恶劣的工作条件下系统性能将显著下降。

现有的车辆图像获取方式主要有两种:一种是由彩色摄像机和图像采集卡组成,其工作过程是:当车辆检测器(如地感线圈、红外线等)检测到车辆进入拍摄范围时,向主机发送启动信号,主机通过采集卡采集一幅车辆图像,为了提高系统对天气、环境、光线等的适应性,摄像机一般采用自动对焦和自动光圈的一体化机,同时光照不足时还可以自动补光照明,保证拍摄图片的质量;另一种是由数码照相机构成,其工作过程是:当车辆检测器检测到车辆进入拍摄范围时,直接给数码照相机发送一个信号,数码相机自动拍摄一幅车辆图像,再传到主机上,数码相机的一些技术参数可以通过与数码相机相连的主机进行设置,光照不足时也需要自动开启补光照明,保证拍摄图片的质量。

2.1.2 车牌定位

车牌定位的主要工作是从摄入的汽车图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来,供字符分割使用。因此,牌照区域的确定是影响系统性能的重要因素之一,牌照的定位与否直接影响到字符分割和字符识别的准确率。目前车牌定位的方法很多,但总的来说可以分为以下4类:

  • (1)基于颜色的分割方法,这种方法主要利用颜色空间的信息,实现车牌分割,包括彩色边缘算法、颜色距离和相似度算法等;
  • (2)基于纹理的分割方法,这种方法主要利用车牌区域水平方向的纹理特征进行分割,包括小波纹理、水平梯度差分纹理等;
  • (3)基于边缘检测的分割方法;
  • (4)基于数学形态法的分割方法。

2.1.3 车牌字符分割

要识别车牌字符,前提是先进行车牌字符的正确分割与提取。字符分割的任务是把多列或多行字符图像中的每个字符从整个图像中切割出来成为单个字符。车牌字符的正确分割对字符的识别是很关键的。传统的字符分割算法可以归纳为以下三类:直接分割法、基于识别基础上的分割法、自适应分割线类聚法

  • 直接分割法简单,但它的局限是分割点的确定需要较高的准确性;
  • 基于识别基础上的分割法是把识别和分割结合起来,但是需要识别的高准确性,它根据分类和识别的耦合程度又有不同的划分;
  • 自适应分割线聚类法是要建立一个分类器,用它来判断图像的每一列是否是分割线,它是根据训练样本来进行自适应学习的神经网络分类器,但对于粘连字符训练困难。也有直接把字符组成的单词当作一个整体来识别的,诸如运用马尔科夫数学模型等方法进行处理,这些算法主要应用于印刷体文本识别。

2.1.4 车牌字符识别

与一般印刷体字符识别相比,车牌字符识别尤其自身的特点,它是文字识别技术与车牌图像自身因素协调兼顾的综合技术,目前,车牌字符识别算法主要是基于模板匹配、特征匹配或神经网络的方法。我国的车牌字符包括50多个汉字,25个大写英文字母,10个数字,总共也就80多个字符,鉴于车牌识别系统的特殊性,如果照搬普通汉字识别的方法,对文字细化后再提取其结构或统计特征,非但得不到意想的结果,反而会降低识别率。

2.2 部分功能代码实现

def __imreadex(self, filename):
    return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)

def __point_limit(self, point):
    if point[0] < 0:
        point[0] = 0
    if point[1] < 0:
        point[1] = 0

def __find_waves(self, threshold, histogram):
    up_point = -1  # 上升点
    is_peak = False
    if histogram[0] > threshold:
        up_point = 0
        is_peak = True
    wave_peaks = []
    for i, x in enumerate(histogram):
        if is_peak and x < threshold:
            if i - up_point > 2:
                is_peak = False
                wave_peaks.append((up_point, i))
        elif not is_peak and x >= threshold:
            is_peak = True
            up_point = i
    if is_peak and up_point != -1 and i - up_point > 4:
        wave_peaks.append((up_point, i))
    return wave_peaks


def __seperate_card(self, img, waves):
    part_cards = []
    for wave in waves:
        part_cards.append(img[:, wave[0]:wave[1]])
    return part_cards


def __accurate_place(self, card_img_hsv, limit1, limit2, color):
    row_num, col_num = card_img_hsv.shape[:2]
    xl = col_num
    xr = 0
    yh = 0
    yl = row_num
    # col_num_limit = self.cfg["col_num_limit"]
    row_num_limit = self.cfg["row_num_limit"]
    col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5  # 绿色有渐变
    for i in range(row_num):
        count = 0
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
                count += 1
        if count > col_num_limit:
            if yl > i:
                yl = i
            if yh < i:
                yh = i
    for j in range(col_num):
        count = 0
        for i in range(row_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
                count += 1
        if count > row_num - row_num_limit:
            if xl > j:
                xl = j
            if xr < j:
                xr = j
    return xl, xr, yh, yl

def __preTreatment(self, car_pic):
    if type(car_pic) == type(""):
        img = self.__imreadex(car_pic)
    else:
        img = car_pic
    pic_hight, pic_width = img.shape[:2]
    if pic_width > self.MAX_WIDTH:
        resize_rate = self.MAX_WIDTH / pic_width
        img = cv2.resize(img, (self.MAX_WIDTH, int(pic_hight * resize_rate)),
                         interpolation=cv2.INTER_AREA)  
#确定车牌颜色
colors = []
for card_index, card_img in enumerate(card_imgs):
    green = yellow = blue = black = white = 0
    try:
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)

    except:
        card_img_hsv = None

    if card_img_hsv is None:
        continue
    row_num, col_num = card_img_hsv.shape[:2]
    card_img_count = row_num * col_num

    
    for i in range(row_num):
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if 11 < H <= 34 and S > 34:  
                yellow += 1
            elif 35 < H <= 99 and S > 34:  
                green += 1
            elif 99 < H <= 124 and S > 34:  
                blue += 1

            if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                black += 1
            elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                white += 1
    color = "no"
    
    limit1 = limit2 = 0
    if yellow * 2 >= card_img_count:
        color = "yellow"
        limit1 = 11
        limit2 = 34  
    elif green * 2 >= card_img_count:
        color = "green"
        limit1 = 35
        limit2 = 99
    elif blue * 2 >= card_img_count:
        color = "blue"
        limit1 = 100
        limit2 = 124  
    elif black + white >= card_img_count * 0.7:
        color = "bw"
    # print(color)
    colors.append(color)
       if limit1 == 0:
        continue

      xl, xr, yh, yl = self.__accurate_place(card_img_hsv, limit1, limit2, color)
    if yl == yh and xl == xr:
        continue
    need_accurate = False
    if yl >= yh:
        yl = 0
        yh = row_num
        need_accurate = True
    if xl >= xr:
        xl = 0
        xr = col_num
        need_accurate = True
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
    if need_accurate:  
        card_img = card_imgs[card_index]
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
        xl, xr, yh, yl = self.__accurate_place(card_img_hsv, limit1, limit2, color)
        if yl == yh and xl == xr:
            continue
        if yl >= yh:
            yl = 0
            yh = row_num
        if xl >= xr:
            xl = 0
            xr = col_num
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]

return card_imgs, colors

2.3 概要设计

在这里插入图片描述

2.4 详细设计

2.4.1 读取图像

使用cv2.imdecode()函数将图片文件转换成流数据,赋值到内存缓存中,便于后续图像操作。使用cv2.resize()函数对读取的图像进行缩放,以免图像过大导致识别耗时过长。

2.4.2 降噪

使用cv2.GaussianBlur()进行高斯去噪。使用cv2.morphologyEx()函数进行开运算,再使用cv2.addWeighted()函数将运算结果与原图像做一次融合,从而去掉孤立的小点,毛刺等噪声。
高斯去噪 :

if blur > 0:  
    img = cv2.GaussianBlur(img, (blur, blur), 0)  
oldimg = img  
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  
# cv2.imshow('GaussianBlur', img)  
kernel = np.ones((20, 20), np.uint8)  
img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)  # 开运算  
img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);  # 与上一次开运算结果融合  
# cv2.imshow('img_opening', img_opening)  

在这里插入图片描述
在这里插入图片描述

2.4.3 二值化

使用cv2.threshold()函数进行二值化处理,再使用cv2.Canny()函数找到各区域边缘。

ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # 二值化  
img_edge = cv2.Canny(img_thresh, 100, 200)  
# cv2.imshow('img_edge', img_edge)  

在这里插入图片描述

2.4.4 将图像边缘连接为一个整体

使用**cv2.morphologyEx()cv2.morphologyEx()**两个函数分别进行一次开运算(先腐蚀运算,再膨胀运算)和一个闭运算(先膨胀运算,再腐蚀运算),去掉较小区域,同时填平小孔,弥合小裂缝。将车牌位置凸显出来。

kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)  
img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)  # 闭运算  
img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)  # 开运算  
# cv2.imshow('img_edge2', img_edge2)  

在这里插入图片描述

2.4.5 查找车牌(矩形区域)

查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中,逐个排除不是车牌的矩形区域。车牌形成的矩形区域长宽比在2到5.5之间,因此使用cv2.minAreaRect()函数框选矩形区域计算长宽比,长宽比在2到5.5之间的可能是车牌,其余的矩形排除。最后使用cv2.drawContours()函数将可能是车牌的区域在原图中框选出来。
在这里插入图片描述

2.4.6 图形修正

矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位,从而进一步确认是否是车牌。类似下两图(仅列举出两个,可能有很多)。
在这里插入图片描述 在这里插入图片描述
在这里插入图片描述

2.4.7 颜色识别

使用颜色定位,排除不是车牌的矩形,目前只识别车牌的颜色主要为蓝、绿、黄三种颜色车牌。根据矩形的颜色不同从而选出最可能是车牌的矩形。同时匹配出车牌的类型(颜色类型)。使用参数为cv2.COLOR_BGR2HSVcv2.cvtColor()函数将原始的RGB图像转换成HSV图像,以便定位颜色。
基于HSV颜色模型可知色调H的取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;查阅相关资料确定出下表:

黄色绿色蓝色
H14-3434-9999-124

根据上表计算出每个矩形中各颜色的占有量,比较每个矩形三个颜色的占有量,即可确定最可能是车牌的矩形以及车牌颜色。
在这里插入图片描述

2.4.8 车牌部分二值化

利用参数为cv2.COLOR_BGR2GRAYcv2.cvtColor()函数将定位到的车牌部分RGB图像转化为灰度图像,再利用cv2. threshold() 函数将灰度图像二值化。需要注意的是,黄、绿色车牌字符比背景暗、与蓝的车牌刚好相反,所以黄、绿车牌在二值化前需要利用cv2.bitwise_not( )函数取反向。

# 做一次锐化处理  
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)  # 锐化  
card_img = cv2.filter2D(card_img, -1, kernel=kernel)  
# cv2.imshow("custom_blur", card_img)  
  
# RGB转GARY  
gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)  
# cv2.imshow('gray_img', gray_img)  
  
# 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向  
if color == "green" or color == "yellow":  
    gray_img = cv2.bitwise_not(gray_img)  
# 二值化  
ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  
# cv2.imshow('gray_img', gray_img)

2.4.9 字符分割(投影法)

根据设定的阈值和图片直方图,找出波峰,利用找出的波峰,分隔图片。因为车牌中“ • ”也会产生一组波峰,因此将八组波峰中的第三组去除掉,即可得到每个字符的波峰,再根据每组波峰的宽度分割牌照图像得到每个字符的图像。
在这里插入图片描述

2.4.10 匹配模板

将分割后的每个图像逐个与已训练好的模板进行匹配,得到识别结果。

from _collections import OrderedDict
from flask import Flask, request, jsonify
from json_utils import jsonify
import numpy as np
import cv2
import time
from collections import OrderedDict
from Recognition import PlateRecognition

# 实例化
app = Flask(__name__)
PR = PlateRecognition()

# 设置编码-否则返回数据中文时候-乱码
app.config['JSON_AS_ASCII'] = False


# route()方法用于设定路由;类似spring路由配置
@app.route('/', methods=['POST'])  # 在线识别
def forecast():
    # 获取输入数据
    stat = time.time()
    file = request.files['image']
    img_bytes = file.read()
    image = np.asarray(bytearray(img_bytes), dtype="uint8")
    image = cv2.imdecode(image, cv2.IMREAD_COLOR)
    RES = PR.VLPR(image)
    if RES is not None:
        result = OrderedDict(
            Error=0,
            Errmsg='success',
            InputTime=RES['InputTime'],
            UseTime='{:.2f}'.format(time.time() - stat),  # RES['UseTime'],
            Number=RES['Number'],
            From=RES['From'],
            Type=RES['Type'],
            List=RES['List'])
    else:
        result = OrderedDict(
            Error=1,
            Errmsg='unsuccess')
    return jsonify(result)


if __name__ == '__main__':
    app.run()

三. 🦁 程序运行结果

系统测试结果
在这里插入图片描述
点击打开文件,在本地中选择要识别的车辆的照片
在这里插入图片描述
在这里插入图片描述
点击导出数据,得到所识别的车牌数据
在这里插入图片描述

四. 🦁 算法性能

每次处理时间小于1s
算法准确度为97%

五. 🦁 总结

设计过程中对于车牌部分的矩形的识别,出现识别错误区域的问题,通过查找网上的相关案例设定好判断条件以及和周围相同题目的同学请教其如何识别出车牌区域得以解决。通过此次综合项目练习,让我对以往的知识点的运用有了更进一步的实践和运用。

tips:
一个数字图像分析期末考核实验,如果您喜欢,可以一键三连哟!!!
【源码】后续会传上来,敬请期待吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/1139.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

渗透测试靶机vulnhub——DC3实战笔记

vm在导入虚拟机的时候把IDE里面的改成IDE 0:0信息收集fscan扫描存活主机目标机器是192.168.1.106nmap扫描端口nmap -A 192.168.1.106 -p- …

Linux中sudo,su与su -命令的区别

前言 su命令就是切换用户的工具&#xff0c;怎么理解呢&#xff1f;比如我们以普通用户tom登录的&#xff0c;但要添加用户任务&#xff0c;执行useradd &#xff0c;tom用户没有这个权限&#xff0c;而这个权限恰恰由root所拥有。解决办法无法有两个&#xff0c;一是退出tom用…

【AI 工具】文心一言内测记录

文章目录一、申请内测二、收到内测邀请三、激活内测四、开始使用1、普通对话2、生成图片3、生成代码4、写剧本5、生成小说五、问题反馈一、申请内测 到 https://yiyan.baidu.com/welcome 页面 , 点击 " 开始体验 " 按钮 , 申请试用 ; 申请时 , 需要填写相关信息 ; 主…

关于.Net和Java的看法——我见过最牛的一个小实习生经历

1、背景 笔者&#xff08;小方同学在学习&#xff09;是一个专科院校的一名普通学生&#xff0c;目前就职于某三线城市的WEB方面.Net开发实习生&#xff0c;在找实习期间和就业期间的一些看法&#xff0c;发表此文&#xff0c;纯个人想法&#xff0c;欢迎讨论&#xff0c;指正…

JavaWeb《一》概念、服务器部署及servlet

&#x1f34e;道阻且长&#xff0c;行则将至。&#x1f353; 本文是javaweb的第一篇&#xff0c;首先介绍了javaweb&#xff0c;然后进行了一个简单的web服务器部署&#xff0c;把我的一个网页发布到了云端&#xff0c;且叫他小Sa&#xff0c;目前啥也没有&#xff0c;之后会使…

【数据结构】万字深入浅出讲解单链表(附原码 | 超详解)

&#x1f680;write in front&#x1f680; &#x1f4dd;个人主页&#xff1a;认真写博客的夏目浅石. &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd; &#x1f4e3;系列专栏&#xff1a;C语言实现数据结构 &#x1f4ac;总结&#xff1a;希望你看完…

进程和线程的区别和联系

进程和线程的区别和联系1. 认识线程2. 进程和线程的关系3. 进程和线程的区别4. 线程共享了进程哪些资源1. 上下文切换2. 线程共享了进程哪些资源1.代码区2. 数据区3. 堆区1. 认识线程 线程是进程的一个实体,它被包含在进程中,一个进程至少包含一个线程,一个进程也可以包含多个…

Python数据分析案例22——财经新闻可信度分析(线性回归,主成分回归,随机森林回归)

本次案例还是适合人文社科领域&#xff0c;金融或者新闻专业。本科生做线性回归和主成分回归就够了&#xff0c;研究生还可以加随机森林回归&#xff0c;其方法足够人文社科领域的硕士毕业论文了。 案例背景 有八个自变量&#xff0c;[微博平台可信度,专业性,可信赖性,转发量,…

什么是栈,如何实现?

欢迎来到 Claffic 的博客 &#x1f49e;&#x1f49e;&#x1f49e; “但有一枝堪比玉&#xff0c;何须九畹始征兰?” 前言&#xff1a; 栈是一种特殊的线性表&#xff0c;就像开盖的桶一样&#xff0c;从底部开始放数据&#xff0c;从顶部开始取数据&#xff0c;那么栈具体是…

最适合游戏开发的语言是什么?

建议初学者学习主流的开发技术 主流开发技术有大量成熟的教程、很多可以交流的学习者、及时的学习反馈等&#xff1b;技术的内里基本都是相同的&#xff0c;学习主流技术的经验、知识可以更好更快地疏通学习新知识和技术。 因此&#xff0c;对C#或者C二选一进行学习较好。 Un…

Linux: 以太网 PHY 驱动简析

文章目录1. 前言2. 背景3. 硬件拓扑4. 以太网卡 PHY 驱动实现4.1 MDIO 总线对象的创建和注册4.2 MDIO 总线从设的 创建注册 和 驱动注册的加载4.2.1 以太网的 PHY 设备创建和注册4.2.2 以太网的 PHY 设备驱动注册和加载4.3 绑定以太网卡的 MAC 和 PHY4.4 以太网卡 PHY 和 MAC 的…

2022-2023 年度广东省职业院校学生专业技能大赛中职组“网络安全”赛项竞赛任务书(样题)

2022-2023 年度广东省职业院校学生专业技能大赛中职组“网络安全”赛项竞赛任务书&#xff08;样题&#xff09; 一、竞赛时间 总计&#xff1a;210 分钟 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A 模块 A-1 登录安全加固 90 分钟 200…

重构·改善既有代码的设计.03之重构手法(上)

1. 前言 之前的重构系列中&#xff0c;介绍了书中提到的重构基础&#xff0c;以及识别代码的坏味道。今天继续第三更&#xff0c;讲述那些重构手法&#xff08;上&#xff09;。看看哪些手法对你的项目能有所帮助… 2. 重新组织函数 对函数进行整理&#xff0c;使之更恰当的…

51单片机入门 -驱动 8x8 LED 点阵屏

硬件型号、软件版本、以及烧录流程 操作系统&#xff1a;Windows 10 x84-64单片机&#xff1a;STC89C52RC编译器&#xff1a;SDCC烧录软件&#xff1a;stcgal 1.6开发板&#xff1a;普中51单片机开发板A2套件&#xff08;2022&#xff09; 在 VS Code 中新建项目到烧录的过程…

[ROC-RK3568-PC] [Firefly-Android] 10min带你了解I2C的使用

&#x1f347; 博主主页&#xff1a; 【Systemcall小酒屋】&#x1f347; 博主追寻&#xff1a;热衷于用简单的案例讲述复杂的技术&#xff0c;“假传万卷书&#xff0c;真传一案例”&#xff0c;这是林群院士说过的一句话&#xff0c;另外“成就是最好的老师”&#xff0c;技术…

5.springcloud微服务架构搭建 之 《springboot集成Hystrix》

1.springcloud微服务架构搭建 之 《springboot自动装配Redis》 2.springcloud微服务架构搭建 之 《springboot集成nacos注册中心》 3.springcloud微服务架构搭建 之 《springboot自动装配ribbon》 4.springcloud微服务架构搭建 之 《springboot集成openFeign》 目录 1.项目…

C语言刷题(7)(字符串旋转问题)——“C”

各位CSDN的uu们你们好呀&#xff0c;今天&#xff0c;小雅兰的内容依旧是复习之前的知识点&#xff0c;那么&#xff0c;就是做一道小小的题目啦&#xff0c;下面&#xff0c;让我们进入C语言的世界吧 实现一个函数&#xff0c;可以左旋字符串中的k个字符。 例如&#xff1a; A…

2023最新性能测试八股文【附答案】,软测人必备!

1. 请描述什么是性能测试、什么是负载测试、什么是压力测试&#xff1f;【参考答案】性能测试&#xff1a;性能测试是和功能测试相对应的。根据用户场景进行的单个用户操作&#xff0c;是属于功能测试领域&#xff0c;主要是验证软件是否可以满足用户的功能需求。比如&#xff…

【刷题之路Ⅱ】LeetCode 11.盛水最多的容器

【刷题之路Ⅱ】LeetCode 11.盛水最多的容器一、题目描述二、解题1、方法1——暴力法1.1、思路分析1.2、代码实现2、方法2——双指针2.1、思路分析2.2、代码实现一、题目描述 原题连接&#xff1a; 11.盛水最多的容器 题目描述&#xff1a; 给定一个长度为 n 的整数数组 height…

44岁了,我从没想过在CSDN创作2年,会有这么大收获

1998年上的大学&#xff0c;02年毕业&#xff0c;就算从工作算起&#xff0c;我也有20余年的码龄生涯了。 但正式开启博文的写作&#xff0c;却是2021年开始的&#xff0c;差不多也就写了2年的博客&#xff0c;今天我来说说我在CSDN的感受和收获。 我是真的没想到&#xff0c;…
最新文章