竞赛 深度学习疫情社交安全距离检测算法 - python opencv cnn

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 相关技术
    • 3.1 YOLOV4
    • 3.2 基于 DeepSort 算法的行人跟踪
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习疫情社交安全距离检测算法 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

安全的社交距离是公共预防传染病毒的途径之一。所以,在人群密集的区域进行社交距离的安全评估是十分重要的。社交距离的测量旨在保持个体之间的物理距离和减少相互接触的人群来减缓或阻止病毒传播,在抗击病毒和预防大流感中发挥重要作用。但时刻保持安全距离具有一定的难度,特别是在校园,工厂等场所,在这种情况下,开发智能摄像头等技术尤为关键。将人工智能,深度学习集成至安全摄像头对行人进行社交距离评估。现阶段针对疫情防范的要求,主要采用人工干预和计算机处理技术。人工干预存在人力资源要求高,风险大,时间成本高等等缺点。计算机处理等人工智能技术的发展,对社交安全距离的安全评估具有良好的效果。

2 实现效果

通过距离分类人群的高危险和低危险距离。

在这里插入图片描述
相关代码

import argparse
from utils.datasets import *
from utils.utils import *
 
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
 
    # Initialize
    device = torch_utils.select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
 
    # Load model
    google_utils.attempt_download(weights)
    model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
    # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
    # model.fuse()
    model.to(device).eval()
    if half:
        model.half()  # to FP16
 
    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model'])  # load weights
        modelc.to(device).eval()
 
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
 
    # Get names and colors
    names = model.names if hasattr(model, 'names') else model.modules.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
 
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
 
        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
 
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
                                   fast=True, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = torch_utils.time_synchronized()
 
        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
 
        # List to store bounding coordinates of people
        people_coords = []
 
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s
 
            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
 
                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file:
                            file.write(('%g ' * 5 + '\n') % (cls, *xywh))  # label format
 
                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        if label is not None:
                            if (label.split())[0] == 'person':
                                people_coords.append(xyxy)
                                # plot_one_box(xyxy, im0, line_thickness=3)
                                plot_dots_on_people(xyxy, im0)
 
            # Plot lines connecting people
            distancing(people_coords, im0, dist_thres_lim=(200,250))
 
            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))
 
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration
 
            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
 
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)
 
    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
 
    print('Done. (%.3fs)' % (time.time() - t0))

3 相关技术

3.1 YOLOV4

YOLOv4使用卷积网络 CSPDarknet-53 特征提取,网络结构模型如图 2 所示。在每个 Darknet-53的残块行加上 CSP(Cross
Stage Partial)结构13,将基础层划分为两部分,再通过跨层次结构的特征融合进行合并。并采用 FPN( feature pyramid
networks)结构加强特征金字塔,最后用不同层的特征的高分辨率来提取不同尺度特征图进行对象检测。最终网络输出 3
个不同尺度的特征图,在三个不同尺度特征图上分别使用 3 个不同的先验框(anchors)进行预测识别,使得远近大小目标均能得到较好的检测。
在这里插入图片描述
YOLOv4 的先验框尺寸是经PASCALL_VOC,COCO
数据集包含的种类复杂而生成的,并不一定完全适合行人。本研究旨在研究行人之间的社交距离,针对行人目标检测,利用聚类算法对 YOLOv4
的先验框微调,首先将行人数据集 F 依据相似性分为i个对象,即在这里插入图片描述,其中每个对象都具有 m
个维度的属性。聚类算法的目的是 i 个对象依据相似性聚集到指定的 j 个类簇,每个对象属于且仅属于一个其到类簇中心距离最小的类簇中心。初始化 j 个 聚 类
中 心C c c c   1 2 , ,..., j,计算每一个对象到每一个聚类中心的欧式距离,见公式
在这里插入图片描述
之后,依次比较每个对象到每个聚类中心的距离,将对象分配至距离最近的簇类中心的类簇中,
得到 在这里插入图片描述个类簇S s s s  1 2 ,
,..., l,聚类算法中定义了类簇的原型,类簇中心就是类簇内所有对象在各个维度的均值,其公式见
在这里插入图片描述
相关代码

def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    print('\nAnalyzing anchors... ', end='')
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])).float()  # wh

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1. / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        return (best > 1. / thr).float().mean()  #  best possible recall

    bpr = metric(m.anchor_grid.clone().cpu().view(-1, 2))
    print('Best Possible Recall (BPR) = %.4f' % bpr, end='')
    if bpr < 0.99:  # threshold to recompute
        print('. Attempting to generate improved anchors, please wait...' % bpr)
        na = m.anchor_grid.numel() // 2  # number of anchors
        new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        new_bpr = metric(new_anchors.reshape(-1, 2))
        if new_bpr > bpr:  # replace anchors
            new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid)  # for inference
            m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
        else:
            print('Original anchors better than new anchors. Proceeding with original anchors.')
    print('')  # newline

3.2 基于 DeepSort 算法的行人跟踪

YOLOv4中完成行人目标检测后生成边界框(Bounding box,Bbox),Bbox 含有包含最小化行人边框矩形的坐标信息,本研究引入
DeepSort 算法[18]完成对行人的质点进行跟踪,目的是为了在运动矢量分析时算行人安全社交距离中。首先,对行人进行质点化计算。其质点计算公式如
在这里插入图片描述
确定行人质点后,利用 DeepSort 算法实现对多个目标的精确定位与跟踪,其核心算法流程如图所示:
在这里插入图片描述
相关代码

class TrackState:
	'''
	单个轨迹的三种状态
	'''
    Tentative = 1 #不确定态
    Confirmed = 2 #确定态
    Deleted = 3 #删除态

class Track:
    def __init__(self, mean, covariance, track_id, class_id, conf, n_init, max_age,
                 feature=None):
        '''
        mean:位置、速度状态分布均值向量,维度(8×1)
        convariance:位置、速度状态分布方差矩阵,维度(8×8)
        track_id:轨迹ID
        class_id:轨迹所属类别
        hits:轨迹更新次数(初始化为1),即轨迹与目标连续匹配成功次数
        age:轨迹连续存在的帧数(初始化为1),即轨迹出现到被删除的连续总帧数
        time_since_update:轨迹距离上次更新后的连续帧数(初始化为0),即轨迹与目标连续匹配失败次数
        state:轨迹状态
        features:轨迹所属目标的外观语义特征,轨迹匹配成功时添加当前帧的新外观语义特征
        conf:轨迹所属目标的置信度得分
        _n_init:轨迹状态由不确定态到确定态所需连续匹配成功的次数
        _max_age:轨迹状态由不确定态到删除态所需连续匹配失败的次数
        '''   
        self.mean = mean
        self.covariance = covariance
        self.track_id = track_id
        self.class_id = int(class_id)
        self.hits = 1
        self.age = 1
        self.time_since_update = 0

        self.state = TrackState.Tentative
        self.features = []
        if feature is not None:
            self.features.append(feature) #若不为None,初始化外观语义特征

        self.conf = conf
        self._n_init = n_init
        self._max_age = max_age

    def increment_age(self):
    	'''
    	预测下一帧轨迹时调用
    	'''
        self.age += 1 #轨迹连续存在帧数+1
        self.time_since_update += 1 #轨迹连续匹配失败次数+1

    def predict(self, kf):
    	'''
    	预测下一帧轨迹信息
    	'''
        self.mean, self.covariance = kf.predict(self.mean, self.covariance) #卡尔曼滤波预测下一帧轨迹的状态均值和方差
        self.increment_age() #调用函数,age+1,time_since_update+1

    def update(self, kf, detection, class_id, conf):
    	'''
    	更新匹配成功的轨迹信息
    	'''
        self.conf = conf #更新置信度得分
        self.mean, self.covariance = kf.update(
            self.mean, self.covariance, detection.to_xyah()) #卡尔曼滤波更新轨迹的状态均值和方差
        self.features.append(detection.feature) #添加轨迹对应目标框的外观语义特征
        self.class_id = class_id.int() #更新轨迹所属类别

        self.hits += 1 #轨迹匹配成功次数+1
        self.time_since_update = 0 #匹配成功时,轨迹连续匹配失败次数归0
        if self.state == TrackState.Tentative and self.hits >= self._n_init:
            self.state = TrackState.Confirmed #当连续匹配成功次数达标时轨迹由不确定态转为确定态

    def mark_missed(self):
    	'''
    	将轨迹状态转为删除态
    	'''
        if self.state == TrackState.Tentative:
            self.state = TrackState.Deleted #当级联匹配和IOU匹配后仍为不确定态
        elif self.time_since_update > self._max_age:
            self.state = TrackState.Deleted #当连续匹配失败次数超标

	'''
	该部分还存在一些轨迹坐标转化及状态判定函数,具体可参考代码来源
	'''

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/117578.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DI93a HESG440355R3 通过其Achilles级认证提供网络安全

DI93a HESG440355R3 通过其Achilles级认证提供网络安全 施耐德电气宣布推出Modicon M580以太网PAC (ePAC)自动化控制器&#xff0c;该控制器采用开放式以太网标准&#xff0c;通过其Achilles级认证提供网络安全。M580 ePAC使工厂操作员能够设计、实施和运行一个积极利用开放网…

torch.cumprod实现累乘计算

cumprod取自“cumulative product”的缩写&#xff0c;即“累计乘法”。 数学公式为&#xff1a; y i x 1 x 2 x 3 . . . x i y_ix_1\times{x_2}\times{x_3}\times{...}\times{x_i} yi​x1​x2​x3​...xi​ 官方链接&#xff1a;torch.cumprod 用法&#xff1a; impo…

AFL入门教学

1、AFL简介 AFL&#xff08;American Fuzzy Lop&#xff09;是一个面向安全的模糊测试工具&#xff0c;它使用了一个新的编译时插桩技术和遗传算法&#xff0c;可以自动发现触发目标二进程程序的测试用例&#xff0c;从而大大提高测试代码的功能覆盖率。 AFL官网&#xff1a;…

轻量封装WebGPU渲染系统示例<14>- 多线程模型载入(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/ModelLoadTest.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 细节请见&#xff1a;引擎系统设计思路 - 用户态与系统态隔离-CSDN博客 2. 高频调用与低频调用隔离。 …

第 370 周赛 100112. 平衡子序列的最大和(困难,离散化,权值树状数组)

太难了&#xff0c;看答案理解了半天 题目的要求可以理解为 nums[ij] - ij > nums[ii] - ii &#xff0c;所以问题化为求序列 bi nums[i] - i 的非递减子序列的最大元素和需要前置知识&#xff0c;离散化&#xff0c;树状数组离散化&#xff1a;将分布大却数量少(即稀疏)的…

改进YOLO系列:12.Repulsion损失函数【遮挡】

1. RepLoss论文 物体遮挡问题可以分为类内遮挡和类间遮挡两种情况。类间遮挡产生于扎堆的同类物体,也被称为密集遮挡(crowd occlusion)。Repulsion损失函数由三个部分构成,yolov5样本匹配,得到的目标框和预测框-一对应第一部分主要作用:预测目标框吸引IOU最大的真实目标框,…

YOLOv8-Seg改进:动态稀疏注意力(BiLevelRoutingAttention)助力分割 | CVPR2023

🚀🚀🚀本文改进:动态稀疏注意力(BiLevelRoutingAttention),实现更灵活的计算分配和内容感知,使其具备动态的查询感知稀疏性,引入到YOLOv8-Seg任务中,1)与C2f结合实现二次创新;2)注意力机制使用; 🚀🚀🚀BiLevelRoutingAttention 亲测在番薯破损分割任务…

微服务注册中心之安装+实例搭建zookeeper

1.下载安装包并上传到Linux服务器 Apache ZooKeeper 可以使用wget或者curl命令 wget http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.7.1/apache-zookeeper-3.7.1-bin.tar.gz连接失败也可以本地下载之后上传到服务器 scp /本地/文件的/路径 用户名远程服务器IP或主…

单链表的应用(2)

环形链表的约瑟夫问题 编号为 1 到 n 的 n 个人围成一圈。从编号为 1 的人开始报数&#xff0c;报到 m 的人离开。 下一个人继续从 1 开始报数。 n-1 轮结束以后&#xff0c;只剩下一个人&#xff0c;问最后留下的这个人编号是多少&#xff1f; 利用链表实现 思路&#xff1…

【JVM系列】- 挖掘·JVM堆内存结构

挖掘JVM堆内存结构 文章目录 挖掘JVM堆内存结构堆的核心概念堆的特点 堆的内存结构内存划分新生代/新生区&#xff08;Young Generation&#xff09;老年代&#xff08;Tenured Generation&#xff09;永久代&#xff08;或元数据区&#xff09;&#xff08;PermGen 或 MetaSpa…

STM32F103C8T6第一天:认识STM32 标准库与HAL库 GPIO口 推挽输出与开漏输出

1. 课程概述&#xff08;297.1&#xff09; 课程要求&#xff1a;C语言熟练&#xff0c;提前学完 C51 2. 开发软件Keil5的安装&#xff08;298.2&#xff09; 开发环境的安装 编程语言&#xff1a;C语言需要安装的软件有两个&#xff1a;Keil5 和 STM32CubeMX Keil5 的安装…

Javascript知识点详解:正则表达式

目录 RegExp 对象 概述 实例属性 实例方法 RegExp.prototype.test() RegExp.prototype.exec() 字符串的实例方法 String.prototype.match() String.prototype.search() String.prototype.replace() String.prototype.split() 匹配规则 字面量字符和元字符 转义符…

【软件STM32cubeIDE下H73xx配置串口uart1+中断接收/DMA收发+HAL库+简单数据解析-基础样例】

#【软件STM32cubeIDE下H73xx配置串口uart1中断接收/DMA收发HAL库简单数据解析-基础样例】 1、前言2、实验器件3-1、普通收发中断接收实验第一步&#xff1a;代码调试-基本配置&#xff08;1&#xff09;基本配置&#xff08;3&#xff09;时钟配置&#xff08;4&#xff09;保存…

前端滚动分页

场景 在前端开发中&#xff0c;我们经常碰到分页加载的需求&#xff0c;在PC端通常用分页组件就可以解决这种类型的场景。而当我们在移动端中&#xff0c;分页组件就显得有点不符合逻辑和正常的交互体验&#xff0c;所以滚动分页常常成为我们的一种选择&#xff0c;即页面滚动…

AMD老电脑超频及性能提升方案及实施

收拾电子元件的时候找到了若干古董的CPU 其中有一个X3 440 是原来同学主板烧了之后给我的&#xff0c;我从网上配了AM2 昂达主板&#xff0c;然后又买了AMD兼容内存&#xff0c;组成了win7 64位电脑&#xff0c;用起来非常不错&#xff0c;我把硬件配置和升级过程说明下&#x…

唐顿庄园的AI圣诞设计(ideogram.ai )

唐顿庄园是一部经典的英国历史剧&#xff0c;讲述了 Crawley 家族在 20 世纪初生活的故事。该剧以其精美的服装、场景和道具而闻名&#xff0c;因此它是圣诞装饰的绝佳灵感。 在本文中&#xff0c;我们将使用 ideogram.ai 创建一个 Downton Abbey 圣诞设计。ideogram.ai 是一个…

ClickHouse 学习之基础入门(一)

第 1 章 ClickHouse 入 门 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用 C 语言编写&#xff0c;主要用于在线分析处理查询&#xff08;OLAP&#xff09;&#xff0c;能够使用 SQL 查询实时生成分析数据报告。 …

Oracle-Ogg经典模式升级为集成模式步骤

​前言: Oracle Ogg集成模式比起经典模式功能更加的强大&#xff0c;支持更多的数据类型&#xff0c;压缩表同步&#xff0c;XA事务&#xff0c;多线程模式&#xff0c;PDB模式同步&#xff0c;RAC环境下抽取配置简单等新功能&#xff0c;所以可以选择将经典模式升级转化为集成…

linux的shell script判断用户输入的字符串,判断主机端口开通情况

判断输入的字符串是否是hello 图一运行报错 检查发下&#xff0c;elif 判断里面少个引号&#xff0c;哎&#xff0c;现在小白到了&#xff0c;一看就会&#xff0c;一写就错的时候了&#xff0c;好像现在案例比较简单&#xff0c;行数较少。 案例二 if 结合test 判断主机端…

Python|OpenCV-图像的添加和混合操作(8)

前言 本文是该专栏的第8篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。 在使用OpenCV库对图像操作的时候,有时需要对图像进行运算操作,类似于加法,减法,位操作等处理。而本文,笔者将针对OpenCV对图像的添加,混合以及位操作进行详细的介绍说明和使用。 下面,…
最新文章