【k8s】pod集群调度

调度约束

Kubernetes 是通过 List-Watch    **** 的机制进行每个组件的协作,保持数据同步的,每个组件之间的设计实现了解耦。

用户是通过 kubectl 根据配置文件,向 APIServer 发送命令,在 Node 节点上面建立 Pod 和 Container。
APIServer 经过 API 调用,权限控制,调用资源和存储资源的过程,实际上还没有真正开始部署应用。这里    需要 Controller Manager、Scheduler 和 kubelet 的协助才能完成整个部署过程。

在 Kubernetes 中,所有部署的信息都会写到 etcd 中保存。实际上 etcd 在存储部署信息的时候,会发送 Create 事件给 APIServer,而 APIServer 会通过监听(Watch)etcd 发过来的事件。其他组件也会监听(Watch)APIServer 发出来的事件。

Pod 是 Kubernetes 的基础单元,Pod 启动典型创建过程如下:    工作机制 ****
(1)这里有三个 List-Watch,分别是 Controller Manager(运行在 Master),Scheduler(运行在 Master),kubelet(运行在 Node)。 他们在进程已启动就会监听(Watch)APIServer 发出来的事件。

(2)用户通过 kubectl 或其他 API 客户端提交请求给 APIServer 来建立一个 Pod 对象副本。

(3)APIServer 尝试着将 Pod 对象的相关元信息存入 etcd 中,待写入操作执行完成,APIServer 即会返回确认信息至客户端。

(4)当 etcd 接受创建 Pod 信息以后,会发送一个 Create 事件给 APIServer。

(5)由于 Controller Manager 一直在监听(Watch,通过https的6443端口)APIServer 中的事件。此时 APIServer 接受到了 Create 事件,又会发送给 Controller Manager。

(6)Controller Manager 在接到 Create 事件以后,调用其中的 Replication Controller 来保证 Node 上面需要创建的副本数量。一旦副本数量少于 RC 中定义的数量,RC 会自动创建副本。总之它是保证副本数量的 Controller(PS:扩容缩容的担当)。

(7)在 Controller Manager 创建 Pod 副本以后,APIServer 会在 etcd 中记录这个 Pod 的详细信息。例如 Pod 的副本数,Container 的内容是什么。

(8)同样的 etcd 会将创建 Pod 的信息通过事件发送给 APIServer。

(9)由于 Scheduler 在监听(Watch)APIServer,并且它在系统中起到了“承上启下”的作用,“承上”是指它负责接收创建的 Pod 事件,为其安排 Node;“启下”是指安置工作完成后,Node 上的 kubelet 进程会接管后继工作,负责 Pod 生命周期中的“下半生”。 换句话说,Scheduler 的作用是将待调度的 Pod 按照调度算法和策略绑定到集群中 Node 上。

(10)Scheduler 调度完毕以后会更新 Pod 的信息,此时的信息更加丰富了。除了知道 Pod 的副本数量,副本内容。还知道部署到哪个 Node 上面了。并将上面的 Pod 信息更新至 API Server,由 APIServer 更新至 etcd 中,保存起来。

(11)etcd 将更新成功的事件发送给 APIServer,APIServer 也开始反映此 Pod 对象的调度结果。

(12)kubelet 是在 Node 上面运行的进程,它也通过 List-Watch 的方式监听(Watch,通过https的6443端口)APIServer 发送的 Pod 更新的事件。kubelet 会尝试在当前节点上调用 Docker 启动容器,并将 Pod 以及容器的结果状态回送至 APIServer。

(13)APIServer 将 Pod 状态信息存入 etcd 中。在 etcd 确认写入操作成功完成后,APIServer将确认信息发送至相关的 kubelet,事件将通过它被接受。

#注意:在创建 Pod 的工作就已经完成了后,为什么 kubelet 还要一直监听呢?原因很简单,假设这个时候 kubectl 发命令,要扩充 Pod 副本数量,那么上面的流程又会触发一遍,kubelet 会根据最新的 Pod 的部署情况调整 Node 的资源。又或者 Pod 副本数量没有发生变化,但是其中的镜像文件升级了,kubelet 也会自动获取最新的镜像文件并且加载。
 

//调度过程   ***


Scheduler 是 kubernetes 的调度器,主要的任务是把定义的 pod 分配到集群的节点上。其主要考虑的问题如下:
●公平:如何保证每个节点都能被分配资源
●资源高效利用:集群所有资源最大化被使用
●效率:调度的性能要好,能够尽快地对大批量的 pod 完成调度工作
●灵活:允许用户根据自己的需求控制调度的逻辑

Sheduler 是作为单独的程序运行的,启动之后会一直监听 APIServer,获取 spec.nodeName 为空的 pod,对每个 pod 都会创建一个 binding,表明该 pod 应该放到哪个节点上。

调度分为几个部分:首先是过滤掉不满足条件的节点,这个过程称为预算策略(predicate);然后对通过的节点按照优先级排序,这个是优选策略(priorities);最后从中选择优先级最高的节点。如果中间任何一步骤有错误,就直接返回错误。

Predicate 有一系列的常见的算法可以使用:     **
●PodFitsResources:节点上剩余的资源是否大于 pod 请求的资源nodeName,检查节点名称是否和 NodeName 匹配。。
●PodFitsHost:如果 pod 指定了 NodeName,检查节点名称是否和 NodeName 匹配。
●PodFitsHostPorts:节点上已经使用的 port 是否和 pod 申请的 port 冲突。
●PodSelectorMatches:过滤掉和 pod 指定的 label 不匹配的节点。 
●NoDiskConflict:已经 mount 的 volume 和 pod 指定的 volume 不冲突,除非它们都是只读。

如果在 predicate 过程中没有合适的节点,pod 会一直在 pending 状态,不断重试调度,直到有节点满足条件。 经过这个步骤,如果有多个节点满足条件,就继续 priorities 过程:按照优先级大小对节点排序。

优先级由一系列键值对组成,键是该优先级项的名称,值是它的权重(该项的重要性)。有一系列的常见的优先级选项包括:
●LeastRequestedPriority:通过计算CPU和Memory的使用率来决定权重,使用率越低权重越高。也就是说,这个优先级指标倾向于资源使用比例更低的节点。
●BalancedResourceAllocation:节点上 CPU 和 Memory 使用率越接近,权重越高。这个一般和上面的一起使用,不单独使用。比如 node01 的 CPU 和 Memory 使用率 20:60,node02 的 CPU 和 Memory 使用率 50:50,虽然 node01 的总使用率比 node02 低,但 node02 的 CPU 和 Memory 使用率更接近,从而调度时会优选 node02。
●ImageLocalityPriority:倾向于已经有要使用镜像的节点,镜像总大小值越大,权重越高。

通过算法对所有的优先级项目和权重进行计算,得出最终的结果。
 

//指定调度节点:
●pod.spec.nodeName 将 Pod 直接调度到指定的 Node 节点上,会跳过 Scheduler 的调度策略,该匹配规则是强制匹配
vim myapp.yaml
apiVersion: apps/v1  
kind: Deployment  
metadata:
  name: myapp
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp
  template:
    metadata:
      labels:
        app: myapp
    spec:
      nodeName: node01
      containers:
      - name: myapp
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80
        
kubectl apply -f myapp.yaml

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp-6bc58d7775-6wlpp   1/1     Running   0          14s   10.244.1.25   node01   <none>           <none>
myapp-6bc58d7775-szcvp   1/1     Running   0          14s   10.244.1.26   node01   <none>           <none>
myapp-6bc58d7775-vnxlp   1/1     Running   0          14s   10.244.1.24   node01   <none>           <none>

//查看详细事件(发现未经过 scheduler 调度分配)
kubectl describe pod myapp-6bc58d7775-6wlpp
......
 Type    Reason   Age   From             Message
  ----    ------   ----  ----             -------
  Normal  Pulled   95s   kubelet, node01  Container image "soscscs/myapp:v1" already present on machine
  Normal  Created  99s   kubelet, node01  Created container nginx
  Normal  Started  99s   kubelet, node01  Started container nginx


●pod.spec.nodeSelector:通过 kubernetes 的 label-selector 机制选择节点,由调度器调度策略匹配 label,然后调度 Pod 到目标节点,该匹配规则属于强制约束
//获取标签帮助
kubectl label --help
Usage:
  kubectl label [--overwrite] (-f FILENAME | TYPE NAME) KEY_1=VAL_1 ... KEY_N=VAL_N [--resource-version=version] [options]

//需要获取 node 上的 NAME 名称
kubectl get node
NAME     STATUS   ROLES    AGE   VERSION
master   Ready    master   30h   v1.20.11
node01   Ready    <none>   30h   v1.20.11
node02   Ready    <none>   30h   v1.20.11

//给对应的 node 设置标签分别为 kgc=a 和 kgc=b
kubectl label nodes node01 kgc=a

kubectl label nodes node02 kgc=b

//查看标签
kubectl get nodes --show-labels
NAME     STATUS   ROLES    AGE   VERSION   LABELS
master   Ready    master   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=master,kubernetes.io/os=linux,node-role.kubernetes.io/master=
node01   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=a,kubernetes.io/arch=amd64,kubernetes.io/hostname=node01,kubernetes.io/os=linux
node02   Ready    <none>   30h   v1.20.11   beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kgc=b,kubernetes.io/arch=amd64,kubernetes.io/hostname=node02,kubernetes.io/os=linux

//修改成 nodeSelector 调度方式
vim myapp1.yaml
apiVersion: apps/v1
kind: Deployment  
metadata:
  name: myapp1
spec:
  replicas: 3
  selector:
    matchLabels:
      app: myapp1
  template:
    metadata:
      labels:
        app: myapp1
    spec:
      nodeSelector:
        kgc: a
      containers:
      - name: myapp1
        image: soscscs/myapp:v1
        ports:
        - containerPort: 80


kubectl apply -f myapp1.yaml 

kubectl get pods -o wide
NAME                     READY   STATUS    RESTARTS   AGE   IP            NODE     NOMINATED NODE   READINESS GATES
myapp1-58cff4d75-52xm5   1/1     Running   0          24s   10.244.1.29   node01   <none>           <none>
myapp1-58cff4d75-f747q   1/1     Running   0          24s   10.244.1.27   node01   <none>           <none>
myapp1-58cff4d75-kn8gk   1/1     Running   0          24s   10.244.1.28   node01   <none>           <none>

//查看详细事件(通过事件可以发现要先经过 scheduler 调度分配)
kubectl describe pod myapp1-58cff4d75-52xm5
Events:
  Type    Reason     Age   From               Message
  ----    ------     ----  ----               -------
  Normal  Scheduled  57s   default-scheduler  Successfully assigned default/myapp1-58cff4d75-52xm5 to node01
  Normal  Pulled     57s   kubelet, node01    Container image "soscscs/myapp:v1" already present on machine
  Normal  Created    56s   kubelet, node01    Created container myapp1
  Normal  Started    56s   kubelet, node01    Started container myapp1


//修改一个 label 的值,需要加上 --overwrite 参数
kubectl label nodes node02 kgc=a --overwrite

//删除一个 label,只需在命令行最后指定 label 的 key 名并与一个减号相连即可:
kubectl label nodes node02 kgc-

//指定标签查询 node 节点
kubectl get node -l kgc=a

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/117984.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

不同VLAN间的通信原理

不同VLAN间的通信原理 VLANaccess口trunk口 不同VLAN间通信原理 首先我们来看看什么是VLAN VLAN VLAN&#xff08;Virtual Local Area Network&#xff09;虚拟局域网&#xff0c;是将一个物理的局域网在逻辑上划分成多个广播域的技术。VLAN技术部署在数据链路层。 VLAN能够隔…

双十一运动健身好物推荐,这几款健身好物一定不要错过!

双十一购物狂欢节又要到了&#xff0c;又要到买买买的时候了&#xff01;相信有很多想健身的小白还在发愁不知道买啥装备&#xff1f;别急&#xff0c;三年健身达人这就给你们分享我的年度健身好物&#xff01; 第一款&#xff1a;南卡Runner Pro4s骨传导耳机 推荐理由&#…

html将复选框变为圆形样例

html将复选框变为圆形样例 说明目录使用对勾图标实现圆形复选框原复选框html代码及默认样式取消复选框未勾选前的样式新增复选框未勾选前的样式新增复选框勾选后的样式获取复选框选中后的value值 使用CSS样式写对勾图标实现圆形复选框 说明 这里记录下用原生html实现将原复选框…

新版Helix QAC 100%覆盖MISRA C++:2023

Helix QAC 2023.3预期将100%覆盖在2023年第四季度发布的新的MISRA C:2023规则。 此外&#xff0c;该版本支持更多的C20语言特性&#xff0c;并改进了Perforce Validate平台和Helix QAC与Validate的集成&#xff0c;以及其他质量改进。 编码标准覆盖率&#xff08;MISRA C:202…

【C++干货铺】内存管理new和delete

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 C语言中动态内存管理方式 malloc/calloc/realloc的区别&#xff1f; C内存管理的方式 内置类型 自定义类型 operator new 和 operator delete 函数 operato…

C++ 动态规划。。。

#include <iostream> #include <algorithm> using namespace std; // 定义一个常量&#xff0c;表示无穷大 const int INF 1e9; int dp[1000 2];// 定义一个函数&#xff0c;计算数组中某个区间的和 int sum(int arr[], int start, int end) {int s 0;for (int …

nacos配置中心docker部署、配置及 goLang 集成使用

为什么需要配置中心 平时我们写一个demo的时候&#xff0c;或者说一个单体的应用&#xff0c;都会有一个配置文件&#xff0c;不管是 json文件或者yaml文件&#xff0c;里面包含了redis,mysql,es等信息&#xff0c;如果我们修改了配置文件&#xff0c;往往我们需要重启&#x…

3BHE022291R0101 PCD230A 专注于制造卓越人工智能

3BHE022291R0101 PCD230A 专注于制造卓越人工智能 BISTelligence是BISTel的一个分支&#xff0c;BISTel是为全球半导体和FPD制造商提供工程和软件自动化产品的领先供应商。半导体产品集团上个月被卖给了新思科技。在出售给Synopsys之后&#xff0c;Bisetlliegnce成立了两个部门…

机器学习实战:基于sklearn的工业蒸汽量预测

文章目录 写在前面工业蒸汽量预测1.基础代码2.模型训练3.模型正则化4.模型交叉验证5.模型超参空间及调参6.学习曲线和验证曲线 写在后面 写在前面 本期内容&#xff1a;基于机器学习的工业蒸汽量预测 实验环境&#xff1a; anaconda python sklearn 注&#xff1a;本专栏内所有…

10.(vue3.x+vite)组件间通信方式之props与$emit

前端技术社区总目录(订阅之前请先查看该博客) 示例效果 父组件代码 <template><div><div>{{message }}</div><Child

element树形结构下拉组件组装对应格式数据

element树形结构下拉组件组装对应格式数据 <el-row><el-col :span"24"><el-form-item label"购买渠道" prop"treeData" class"grid-content bg-purple"><el-cascaderv-model"testForm.treeData":optio…

Java web(六):FilterListenerAJAX

文章目录 一、Filter1.1 基本介绍1.2 过滤器的执行流程1.3 拦截路径配置1.4 过滤器链1.5 案例 二、Listener三、AJAX3.1 快速入门3.2 Axios异步框架 四、 JSON4.1 JSON基础语法4.2 Fastjson 五、 案例JSONAxiosServlet Java web的三大组件&#xff1a;Servlet、Filter、Listene…

mac电脑系统清理软件CleanMyMac X2024破解版下载

基本上&#xff0c;不管是win版还是Mac版的电脑&#xff0c;其装机必备就是一款电脑系统清理软件&#xff0c;就比如Mac&#xff0c;目前在市面上&#xff0c;电脑系统清理软件是非常多的。 对于不熟悉系统的用户来说&#xff0c;使用一些小众工具&#xff0c;往往很多用户都不…

SQL 左连接 LEFT JOIN 关键字||SQL右连接 RIGHT JOIN 关键字

SQL 左连接 LEFT JOIN 关键字 SQL左链接LEFT JOIN关键字返回左表&#xff08;表1&#xff09;中的所有行&#xff0c;即使在右表&#xff08;表2&#xff09;中没有匹配。如果在正确的表中没有匹配&#xff0c;结果是NULL。 SQL LEFT JOIN 语法 SELECT column_name(s) …

VSCode修改主题为Eclipse

前言 从参加开发以来&#xff0c;一直使用eclipse进行开发&#xff0c;基本官方出新版本&#xff0c;我都会更新。后来出来很多其他的IDE工具&#xff0c;我也尝试了&#xff0c;但他们的主题都把我劝退了&#xff0c;黑色主题是谁想出来&#xff1f;&#x1f602; 字体小的时…

腾讯云CVM S5服务器4核8G配置性能测评和优惠价格表

腾讯云4核8G服务器CVM标准型S5实例性能测评&#xff0c;包括CPU型号、内存、系统盘、CVM实例规格性能测评&#xff0c;腾讯云4核8G租用优惠价格表&#xff0c;腾讯云服务器网txyfwq.com分享腾讯云4核8G服务器CVM S5性能测评和优惠价格表&#xff1a; 腾讯云4核8G服务器CVM S5性…

「软件设计师」 2023年上半年上午真题解析

「软件设计师」 2023年上半年上午真题解析 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准备的 &…

【黑马程序员】Maven 进阶

文章目录 前言一、分模块开发与设计1. 分模块开发意义2. 分模块开发&#xff08;模块拆分&#xff09;2.1 创建 Maven 模块2.2 书写模块代码2.3 通过 Maven 指令安装模块到本地仓库&#xff08;install 指令&#xff09; 二、依赖管理1. 依赖传递1.1 依赖传递冲突问题 2. 可选依…

SAP-MM-批量扩充视图

MM50 可以通过这个程序批量维护或查看这个物料没有维护的视图&#xff0c;进行扩充。