VINS-Mono-后端优化 (三:视觉雅可比推导)

用逆深度是因为这样可以在优化中从优化3个变量降低到1个,降低优化的维度加快求解速度
用逆深度是因为当距离很远的时候, 1 x \frac{1}{x} x1 x x x 就会无穷大,而3D点很近的情况也一般不会有,这也是为了数值稳定性

用逆深度的话就要和其中一帧进行绑定,这个就是和观测到该点的第一帧进行绑定,这样才能表示一个3D点信息

划窗中维护的全部都是IMU下的位姿,所以相机要通过外参变换到IMU坐标系下

在这里插入图片描述
这里就构成了视觉误差,需要求关于优化变量的雅可比矩阵,这里约束了第 i i i 帧和第 j j j 帧的 IMU 的姿态,同时还会优化相机和IMU的外参,这个也是紧耦合的特点之一(上一节同时优化 IMU预积分自身的零偏Ba也是紧耦合特点之一),3D点(逆深度)也是要优化,总共就是4个参数

转换公式如下:
i i i 帧归一化坐标系 -> 第 j j j 帧相机系, 1 λ \frac{1}{\lambda} λ1,就是深度, λ \lambda λ 是逆深度
在这里插入图片描述
将旋转和平移分开后如下:
在这里插入图片描述

将刚刚第 i i i 帧相机系下的3D点进行归一化,然后和光流追踪到的匹配点进行残差计算,这就获得了视觉重投影误差
在这里插入图片描述

计算残差对优化量的雅可比

有带时间延时估计的雅可比计算和不带时间估计的雅可比计算
这里先讲不带时间延时的雅可比计算

这里的误差项是2维的,坐标点是3维的
要求误差对旋转的雅可比只能通过链式求导的方式
∂ r ∂ p j ⋅ ∂ p j ∂ x \frac{\partial r}{\partial p_{j}}·\frac{\partial p_{j}}{\partial x} pjrxpj

∂ r ∂ p j \frac{\partial r}{\partial p_{j}} pjr 是2×3维的,对平移 x , y , z x,y,z x,y,z 进行求导
= [ 1 z 0 − x z 2 0 1 z − y z 2 ] =\begin{bmatrix}\frac{1}{z}&0&-\frac{x}{z^{2}} \\ 0&\frac{1}{z}&-\frac{y}{z^{2}} \end{bmatrix} =[z100z1z2xz2y]

这里的误差也有协方差矩阵,提点的置信度是设定为1.5个像素不变
残差也得乘上置信度

计算 p j p_{j} pj T T T 的雅可比

平移 x , y , z x,y,z x,y,z 的公式为
在这里插入图片描述

T T T 包含旋转 R R R 和平移 t t t

i i i 时刻求导

i i i 时刻的变量也是要优化的量,所以当然也要求导

p w b i p_{wb_{i}} pwbi 求导

∂ p j ∂ p w b i = R b c T ⋅ R w b j T \frac{\partial p_{j}}{\partial p_{wb_{i}}}=R^{T}_{bc}·R^{T}_{wb_{j}} pwbipj=RbcTRwbjT

R w b i R_{wb_{i}} Rwbi 求导

∂ p j ∂ R w b i \frac{\partial p_{j}}{\partial R_{wb_{i}}} Rwbipj
先把公式中有 R w b i R_{wb_{i}} Rwbi 的项提取出来

= R b c T R w b j T R w b i ( R b c P c i + p b c ) =R^{T}_{bc}R^{T}_{wb_{j}}R_{wb_{i}}(R_{bc}P^{c_{i}}+p_{bc}) =RbcTRwbjTRwbi(RbcPci+pbc)
= A R w b i b =AR_{wb_{i}}b =ARwbib

后面那一串 b b b 乘完后是向量,所以可以对李代数进行扰动求导(纯旋转矩阵是不能对李代数求导的,因为矩阵无法对向量求导,这里是乘完后是个向量,所以可以用向量来表示旋转的扰动量,然后用导数的定义来进行求导)

∂ A R w b i b ∂ ϕ = A R w b i e x p ( ϕ ∧ ) b − A R w b i b ϕ \frac{\partial AR_{wb_{i}}b}{\partial \phi}=\frac{AR_{wb_{i}}exp(\phi^{\wedge})b-AR_{wb_{i}}b}{\phi} ϕARwbib=ϕARwbiexp(ϕ)bARwbib
= A R w b i ( I + ϕ ∧ ) b − A R w b i b ϕ =\frac{AR_{wb_{i}}(I+\phi^{\wedge})b-AR_{wb_{i}}b}{\phi} =ϕARwbi(I+ϕ)bARwbib
= A R w b i ϕ ∧ b ϕ =\frac{AR_{wb_{i}}\phi^{\wedge}b}{\phi} =ϕARwbiϕb
根据反对成矩阵的性质
= − A R w b i b ∧ ϕ ϕ =\frac{-AR_{wb_{i}}b^{\wedge}\phi}{\phi} =ϕARwbibϕ
= − A R w b i b ∧ =-AR_{wb_{i}}b^{\wedge} =ARwbib

那个信息矩阵乘完第一步也得乘进来这里这个第2步的雅可比矩阵

j j j 时刻进行求导

p w b j p_{wb_{j}} pwbj 求导

∂ p j ∂ p w b j = − R b c T ⋅ R w b j T \frac{\partial p_{j}}{\partial p_{wb_{j}}}=-R^{T}_{bc}·R^{T}_{wb_{j}} pwbjpj=RbcTRwbjT

R w b j R_{wb_{j}} Rwbj 求导

把和 R w b j R_{wb_{j}} Rwbj 有关的项提取出来
= R b c T R w b j T ( R w b i R b c P c i + R w b i p b c + p w b i − p w b j ) =R^{T}_{bc}R^{T}_{wb_{j}}(R_{wb_{i}}R_{bc}P^{c_{i}}+R_{wb_{i}}p_{bc}+p_{wb_{i}}-p_{wb_{j}}) =RbcTRwbjT(RwbiRbcPci+Rwbipbc+pwbipwbj)
= A R w b j T b =AR^{T}_{wb_{j}}b =ARwbjTb

R w b j T R^{T}_{wb_{j}} RwbjT 是只能左乘的,但是我们现在要算他右乘的扰动方向,因为方向会不同,用左乘的求导结果加个负号就是右乘的结果,这里推导直接用右乘,所以要加个逆把这个转置消掉来进行推导
= A ( R w b j e x p ( ϕ ∧ ) ) − 1 b − A ( R w b j ) − 1 b =A(R_{wb_{j}}exp(\phi^{\wedge}))^{-1}b-A(R_{wb_{j}})^{-1}b =A(Rwbjexp(ϕ))1bA(Rwbj)1b
= A ( I − ϕ ∧ ) R w b j T b − A ( R w b j ) − 1 b =A(I-\phi^{\wedge})R^{T}_{wb_{j}}b-A(R_{wb_{j}})^{-1}b =A(Iϕ)RwbjTbA(Rwbj)1b
= − A ϕ ∧ R w b j T b =-A\phi^{\wedge}R^{T}_{wb_{j}}b =AϕRwbjTb
= A ( R w b j T b ) ∧ ϕ =A(R^{T}_{wb_{j}}b)^{\wedge}\phi =A(RwbjTb)ϕ
消去 ϕ \phi ϕ
= A ( R w b j T b ) ∧ =A(R^{T}_{wb_{j}}b)^{\wedge} =A(RwbjTb)

后面的 R w b j T b R^{T}_{wb_{j}}b RwbjTb 实际就是 3D 点在 第 j j j 帧 IMU系下的位姿,按照展开前的刚体变换来理解一下就好了

对 IMU-相机 的外参求导$

p b c p_{bc} pbc 求导

= R b c T R w b j T R w b i − R b c T =R^{T}_{bc}R^{T}_{wb_{j}}R_{wb_{i}}-R^{T}_{bc} =RbcTRwbjTRwbiRbcT

R b c R_{bc} Rbc 求导

代码中的 r i c = R b c , t i c = t b c ric=R_{bc},tic=t_{bc} ric=Rbc,tic=tbc Q = R w b Q=R_{wb} Q=Rwb

导数是符合加法的 ( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x)+g(x))^{'}=f^{'}(x)+g^{'}(x) (f(x)+g(x))=f(x)+g(x)

加法后面的求导结果 = ( R b c T b ) =(R^{T}_{bc}b) =(RbcTb) ,这个推导和上面类似,就不详细写了

加法前面的求导稍微复杂一点
= ( R b c e x p ( ϕ ∧ ) ) − 1 R w b j T R w b i R b c T e x p ( ϕ ∧ ) P c i − R b c T R w b j T R w b i R b c T P c i =(R_{bc}exp(\phi^{\wedge}))^{-1}R^{T}_{wb_{j}}R_{wb_{i}}R^{T}_{bc}exp(\phi^{\wedge})P^{c_{i}}-R^{T}_{bc}R^{T}_{wb_{j}}R_{wb_{i}}R^{T}_{bc}P^{c_{i}} =(Rbcexp(ϕ))1RwbjTRwbiRbcTexp(ϕ)PciRbcTRwbjTRwbiRbcTPci

下面暂时省略写后面它自身

= ( I − ϕ ∧ ) R b c T R w b j T R w b i R b c T ( I + ϕ ∧ ) P c i =(I-\phi^{\wedge})R^{T}_{bc}R^{T}_{wb_{j}}R_{wb_{i}}R^{T}_{bc}(I+\phi^{\wedge})P^{c_{i}} =(Iϕ)RbcTRwbjTRwbiRbcT(I+ϕ)Pci
= ( I − ϕ ∧ ) A ( I + ϕ ∧ ) P c i =(I-\phi^{\wedge})A(I+\phi^{\wedge})P^{c_{i}} =(Iϕ)A(I+ϕ)Pci
= ( A − ϕ ∧ A ) ( I + ϕ ∧ ) P c i =(A-\phi^{\wedge}A)(I+\phi^{\wedge})P^{c_{i}} =(AϕA)(I+ϕ)Pci
= ( A + A ϕ ∧ − ϕ ∧ A − ϕ ∧ A ϕ ∧ ) P c i − A P c i =(A+A\phi^{\wedge}-\phi^{\wedge}A-\phi^{\wedge}A \phi^{\wedge})P^{c_{i}}-AP^{c_{i}} =(A+AϕϕAϕAϕ)PciAPci

其中 ϕ ∧ A ϕ ∧ \phi^{\wedge}A \phi^{\wedge} ϕAϕ 是二阶,是相对于一阶的无穷小,这里只讨论一阶的展开且 ϕ \phi ϕ 本身就是小量,所以直接约掉

= ( A ϕ ∧ − ϕ ∧ A ) ⋅ P c i =(A\phi^{\wedge}-\phi^{\wedge}A)·P^{c_{i}} =(AϕϕA)Pci
= − A P ∧ ϕ + ( A P ) ∧ ϕ =-AP^{\wedge}\phi+(AP)^{\wedge}\phi =APϕ+(AP)ϕ
约掉 ϕ \phi ϕ
= − A P ∧ + ( A P ) ∧ =-AP^{\wedge}+(AP)^{\wedge} =AP+(AP)

对逆深度 λ \lambda λ 求导

∂ p j ∂ P c i ∂ P c i ∂ λ \frac{\partial p_{j}}{\partial P^{c_{i}}}\frac{\partial P^{c_{i}}}{\partial \lambda} PcipjλPci

前面的 ∂ p j ∂ P c i = R b c T R w b j T R w b i R b c \frac{\partial p_{j}}{\partial P^{c_{i}}}=R^{T}_{bc}R^{T}_{wb_{j}}R_{wb_{i}}R_{bc} Pcipj=RbcTRwbjTRwbiRbc

P c i = 1 λ ⋅ p P^{c_{i}}=\frac{1}{\lambda} ·p Pci=λ1p p p p 是归一化相机系下的3D点

∂ P c i ∂ λ = − 1 λ 2 ⋅ p \frac{\partial P^{c_{i}}}{\partial \lambda}=-\frac{1}{\lambda^{2}}·p λPci=λ21p

这个 − 1 λ 2 -\frac{1}{\lambda^{2}} λ21 是个系数,移到哪里都可以

零空间漂移处理

优化的时候会固定滑窗中的第一帧的xyz和yaw角,因为IMU约束的是相对位姿,且IMU的4个不可观自由度就是 y a w 、 x 、 y 、 z yaw、x、y、z yawxyz,绝对位姿是没有约束的,所以可能会产生在 4自由度的 0 空间漂移的情况,fusion中的GPS就是约束绝对位姿的。

VINS中的固定是先计算第一帧的yaw和xyz的偏移量,然后把后面的帧都减去这个偏移量,偏移回之前的位置,这样的做法就类似ORB中的固定第一帧的位姿,不过这里是减去第一帧的偏移量,其实就是滑窗中的整条轨迹调整回偏移前的位置,这样就保证不受 0 空间的影响。

和 yaw相关的量都会受影响,就是和旋转向量的量都会受影响, P , V P,V P,V 受影响,零偏 B a , B g Ba,Bg Ba,Bg ,外参 T b c Tbc Tbc 不受影响

前面会把旋转矩阵变成rpy,然后把yaw的角度差取出来构成新的偏移旋转矩阵,因为只是yaw发生漂移

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/128185.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SAP 20策略测试简介

20策略相信也有很多小伙伴使用过,与50最大的不同之处就在于20策略是不能做计划独立需求的。 我看一下系统中20 策略的配置图,可以看到独立需求这里的配置都是空的。 1、我们开始测试准备物料 成品物料AB4 原材料:100197 2、创建BOM—CS01 3、创建主配方—c201 ,离散制造…

创建第一个Go的程序Hello Kitty

上一篇,我们已经搭建好了开发要用的基础环境:Go开发基础环境搭建, 今天我们要开始用GoLand实操关于Go的代码开发。 创建工程 File > New > Project 其中 game为项目名称 在项目目录下会自动生成一个文件:go.mod ,模块是相关Go包的集合。modules是源代码交换…

R | R包安装报错-github连接速度慢或无法访问 | metaboanalystR | Retip | rJava安装

R | R包安装报错-github连接速度慢或无法访问 | metaboanalystR | Retip | rJava安装 一、metaboanalystR 安装1.1 Bioconductor报错,无网络连接1.2 github520-修改hosts文件 二、retip安装2.1 rJava包加载报错及安装2.2 安装Retip包 三、从Bioconductor安装Rdisop报…

web3 前端dapp从redux过滤出 (我创建与别人创建)正在执行的订单 并展示在Table上

上文 web3 从redux中拿出所有已完成订单 并渲染到对应的Table列表中 我们从redux中 取出并渲染了 已完成的订单 那么 我们继续 万里长征 就快看到尽头了呀 我们先起一下环境 ganache 终端输入 ganache -d然后 登一下 MetaMask 然后 打开我们的项目 发布一下合约 truffle mig…

GZ038 物联网应用开发赛题第4套

2023年全国职业院校技能大赛 高职组 物联网应用开发 任 务 书 (第4套卷) 工位号:______________ 第一部分 竞赛须知 一、竞赛要求 1、正确使用工具,操作安全规范; 2、竞赛过程中如有异议,可向现场考评…

SAP 50策略测试简介

上篇博文写了40策略的测试,40策略就是典型的按库存生产,考虑库存,考虑销售订单。 本文将测试50策略,按单生产用的最多的策略。相信很多公司按单生产应该都会用到50的策略 1、首先还是先创建物料AB3 同时将BOM中的原材料的独立集中的字段设置为1 2、创建BOM—CS01 3、同杨…

动态通讯录及程序保存在文件中

目录 一、结构体改造及增容函数 1.结构体部分 2.初始化函数及增容函数 二、信息添加及销毁和排序 1.信息添加函数(Add) 2.销毁函数(Destroy) 3.排序部分(qsort) 三、通讯录信息保存 1.保存在文件中…

【华为数通HCIP | 网络工程师】821-BGP 组播高频题与解析(1)

个人名片: 🐼作者简介:一名大三在校生,喜欢AI编程🎋 🐻‍❄️个人主页🥇:落798. 🐼个人WeChat:hmmwx53 🕊️系列专栏:🖼️…

在线直线度测量仪为什么在轧钢行业越来越受欢迎!

在线直线度测量仪是利用光电检测原理及直线法进行直线度尺寸精密检测的。其测量方法是前后两台测量仪测量的数据拟合一条直线,中间的测量仪所测数值与直径做对比,即可得到被测物的直线度尺寸。 在线直线度测量仪的优点 在线直线度测量仪是一种三台小测…

Vue生命周期全解析:从工厂岗位到任务执行,一览无遗!

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、生…

Bean的循环依赖问题

2023.11.10 通俗来讲,循环依赖指的是一个实例或多个实例存在相互依赖的关系(类之间循环嵌套引用)。比如:丈夫类Husband,妻子类Wife。Husband中有Wife的引用。Wife中有Husband的引用。 正常调用这两对象不会出现问题&am…

python实现全向轮EKF_SLAM

python实现全向轮EKF_SLAM 代码地址及效果运动预测观测修正参考算法 代码地址及效果 代码地址 运动预测 简化控制量 u t u_t ut​ 分别定义为 v x Δ t v_x \Delta t vx​Δt, v y Δ t v_y \Delta t vy​Δt,和 ω z Δ t \omega_z \Delta t ωz…

解压游戏资源,导出游戏模型

游戏中有很多好看的角色,地图等等资源。 你有没有想过,把他们导出到自己的游戏中进行魔改又或则玩换肤等操作呢? 相信很多同学都喜欢拳皇中的角色, 那么我们今天就拿拳皇15举例子,导出他的资源。 首先要先安装好这个…

通过商品ID获取到京东商品详情页面数据,京东商品详情官方开放平台API接口,京东APP详情接口,可以拿到sku价格,销售价演示案例

淘宝SKU详情接口是指,获取指定商品的SKU的详细信息。SKU是指提供不同的商品参数组合的一个机制,通过不同的SKU来标识商品的不同组合形式,如颜色、尺寸等。SKU详情接口可以帮助开发者获取指定商品的SKU列表,以及每个SKU的属性、库存…

算法:穷举,暴搜,深搜,回溯,剪枝

文章目录 算法基本思路例题全排列子集全排列II电话号码和字母组合括号生成组合目标和组合总和优美的排列N皇后有效的数独解数独单词搜索黄金矿工不同路径III 总结 算法基本思路 穷举–枚举 画出决策树设计代码 在设计代码的过程中,重点要关心到全局变量&#xff…

ChatGPT风潮再起!最新国内产品一网打尽,畅游指南曝光!

一、国内类chatgpt产品 在人工智能领域,自然语言处理(NLP)是一个重要的方向,涉及到语音识别、文本生成、机器翻译、问答系统等多个应用场景。近年来,随着深度学习技术的发展,NLP也取得了突破性的进展&#…

React向组件内部动态传入带内容的结构--props

children props&#xff1a;通过组件标签体传入结构 <A><B>xxx</B> </A> {this.props.children}render props&#xff1a;通过组件标签属性传入结构&#xff0c;一般用render函数属性 <A render{data> <C data{data}></C>}></…

super() 和 super(props) 有什么区别?

一、ES6 类 在 ES6 中&#xff0c;通过 extends 关键字实现类的继承&#xff0c;方式如下&#xff1a; class sup { constructor(name) { this.name name; } printName() { console.log(this.name); }}class sub extends sup { constructor(name, age) { …

二十二、W5100S/W5500+RP2040树莓派Pico<SMTP发送邮件>

文章目录 1 前言2 简介2 .1 什么是SMTP&#xff1f;2.2 SMTP是如何工作的&#xff1f;2.3 SMTP、IMAP和POP32.4 SMTP应用场景 3 WIZnet以太网芯片4 SMTP发送邮件示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接 1 前…

常见产品结构四大类型 优劣势比较

一般&#xff0c;我们通过产品架构来构建用户体验&#xff0c;这样可以提供更清晰的导航和组织、优化用户流程和交互、增强产品的可扩展性和可维护性&#xff0c;提升用户的满意度和忠诚度。如果没有明确的产品结构&#xff0c;可能会导致功能冗余或功能缺失、交互流程混乱等问…
最新文章