力扣138:随机链表的复制

力扣138:随机链表的复制

题目描述:

给你一个长度为 n 的链表,每个节点包含一个额外增加的随机指针 random ,该指针可以指向链表中的任何节点或空节点。

构造这个链表的 深拷贝。 深拷贝应该正好由 n 个 全新 节点组成,其中每个新节点的值都设为其对应的原节点的值。新节点的 next 指针和 random 指针也都应指向复制链表中的新节点,并使原链表和复制链表中的这些指针能够表示相同的链表状态。复制链表中的指针都不应指向原链表中的节点

例如,如果原链表中有 X 和 Y 两个节点,其中 X.random --> Y 。那么在复制链表中对应的两个节点 x 和 y ,同样有 x.random --> y 。

返回复制链表的头节点。

用一个由 n 个节点组成的链表来表示输入/输出中的链表。每个节点用一个 [val, random_index] 表示:

val:一个表示 Node.val 的整数。
random_index:随机指针指向的节点索引(范围从 0 到 n-1);如果不指向任何节点,则为 null 。
你的代码 只 接受原链表的头节点 head 作为传入参数。

示例 1:
在这里插入图片描述

输入:head = [[7,null],[13,0],[11,4],[10,2],[1,0]]
输出:[[7,null],[13,0],[11,4],[10,2],[1,0]]

示例 2:

在这里插入图片描述

输入:head = [[1,1],[2,1]]
输出:[[1,1],[2,1]]

示例 3:

在这里插入图片描述

输入:head = [[3,null],[3,0],[3,null]]
输出:[[3,null],[3,0],[3,null]]

提示:

0 <= n <= 1000
-104 <= Node.val <= 104
Node.random 为 null 或指向链表中的节点。

分析:

这道题的意思是对一个 含有随机指针的单链表进行复制,也就是说,复制之后也是一个完全一样的含有随机指针的单链表。原来单链表中每个节点的随机指针指向的节点,在复制之后,依然 也得是一样的。

对于这道题,三步走:

  • 第一步 拷贝节点在原节点后面:

将原链表中每个节点依次拷贝一份,并插入到对应节点后面。在遍历原链表时,cur用于记录原链表中当前节点。动态开辟一个copy节点,用于存储拷贝的节点。

在插入时,先执行copy->next=cur->next;再执行cur->next=copy

在这里插入图片描述

完成依次拷贝并插入到对应节点后,将cur后移。这里的后移是在原链表上后移动,但是原链表的第一个节点在后面插了一个节点,因此cur一个需要移动两个节点,即cur=cur->next->next或者cur=copy->next

在这里插入图片描述

什么时候遍历结束呢?

当前指针cur为空时,表示原来的链表遍历结束。
在这里插入图片描述

  • 第二步:处理拷贝节点copy的random

原来链表的每个节点都有一个随机指针,因此在复制的时候,也要将随机指针赋值到拷贝的链表中。

以下面这个情况为例:
在这里插入图片描述
可以看到,第一个节点7的随机指针指向的是NULL,第二个节点13的随机指针指向的是第一个节点7,第三个节点11的随机指针指向的是第五个节点1…

当原链表节点的随机指针指向NULL时,那么我们对应的拷贝节点的随机指针也指向NULL,即copy->random=NULL

在这里插入图片描述

当原链表节点的随机指针指向另外一个节点时,可以使对应的拷贝节点copy指向当前节点cur随机节点指向的节点的下一个节点,即copy->random=cur->random->next,这一步是整个代码的灵魂,这里可能有点绕,结合下图去分析:

在这里插入图片描述

当前指针cur为空时,遍历结束。

  • 第三步:拷贝节点copy解下来尾插:

这一步,主要使用是单链表中尾插操作。

需要先创建一个新的头指针和尾指针,当尾指针为空时,也就是说新链表里面还没有节点时,此时插入的节点就是这个新链表的头节点

遍历链表,当前指针cur为空时,遍历结束

拷贝指针copy所指向的节点,需要尾插到新链表里面,copy指针即copy=cur->next,实现尾插:tail->next=copy

将拷贝节点解下来后,还需要将原链表复原,因此,需要创建一个next指针指向copy->next,next也就是原链表的下一个节点。补原链表,cur->next=next

cur移动到next位置,继续执行上述操作,直到cur为空

最后只需要返回新链表的头节点,即拷贝后的链表。

代码:

/**
 * Definition for a Node.
 * struct Node {
 *     int val;
 *     struct Node *next;
 *     struct Node *random;
 * };
 */

struct Node* copyRandomList(struct Node* head) {
    struct Node*cur=head;
    while(cur)
    {
	    struct Node*copy=(struct Node*)malloc(sizeof(struct Node));
        copy->val=cur->val;
        copy->next=cur->next;
        cur->next=copy;

        cur=cur->next->next;
    }

    cur=head;
    while(cur)
    {
        struct Node*copy=cur->next;
        if(cur->random==NULL)
        {
            copy->random=NULL;
        }
        else
        {
            copy->random=cur->random->next;
        }
        cur=cur->next->next;
    }

    struct Node* newhead=NULL,*tail=NULL;
    cur=head;
    while(cur)
    {
        struct Node*copy=cur->next;
        struct Node*next=copy->next;

        if(tail==NULL)
        {
            newhead=tail=copy;
        }
        else{
            tail->next=copy;
            tail=tail->next;
        }
        cur->next=next;
        cur=next;
    }
    return newhead;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/133265.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的培训机构运营系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

【3】Gradle-快速入门使用【Gradle概念】

目录 【3】Gradle-快速入门使用【Gradle概念】Gradle任务查看可用任务了解任务探索任务依赖性 依赖关系了解传递依赖关系查看项目依赖项添加版本目录 【可选】 插件使用插件查看插件提供的任务配置插件 增量构建启用缓存使用构建缓存步骤总结 个人主页: 【⭐️个人主页】 需要您…

JVM虚拟机:垃圾回收器之CMS(老年代)

本文重点 在前面的课程中我们学习了Serial和PO垃圾回收器,本文将学习一种新的在老年代使用的垃圾回收器CMS。 特点 CMS收集器是一种以获取最短回收停顿时间为目标的收集器(还是会有短暂的STW),适合互联网或者B/S系统的服务器上,这类应用尤其重视服务器的响应速度,希望…

反转链表 --- 递归回溯算法练习三

目录 1. 分析题意 2. 分析算法原理 2.1. 递归思路&#xff1a; 1. 挖掘子问题&#xff1a; 3. 编写代码 3.1. step 1&#xff1a; 3.2. step 2&#xff1a; 3.3. step 3&#xff1a; 3.4. 递归代码&#xff1a; 1. 分析题意 力扣原题链接如下&#xff1a; 206. 反转链…

巧用ADB安卓调试工具,在双十一直播间轻松回复文字领取优惠!

微信改版了&#xff0c;现在看到我们全凭缘分&#xff0c;为了不错过【全栈工程师修炼指南】重要内容及福利&#xff0c;大家记得按照上方步骤设置「接收文章推送」哦~ 关注回复【学习交流群】加入【SecDevOps】学习交流群! 文章目录&#xff1a; 1.前言简述 描述: 通过前面几篇…

【AICFD案例教程】进气歧管分析

AICFD是由天洑软件自主研发的通用智能热流体仿真软件&#xff0c;用于高效解决能源动力、船舶海洋、电子设备和车辆运载等领域复杂的流动和传热问题。软件涵盖了从建模、仿真到结果处理完整仿真分析流程&#xff0c;帮助工业企业建立设计、仿真和优化相结合的一体化流程&#x…

【那些反爬和反反爬】xpath根据兄弟节点定位元素

其实这篇不涉及什么高大上的反爬&#xff0c;但是实在不知道要把这篇文章归类到哪里&#xff0c;就直接先扔这里吧。 先吐槽一句&#xff1a;萌娘百科绝对是我再也不想爬第二次的网站。 第二句&#xff1a;&#xff08;真理&#xff09;把网站弄得越乱越让人摸不着头脑&#…

【2024提前批/秋招笔试汇总2】——大疆-嵌入式软件-2023.08.06

一、 单选题&#xff08;40分&#xff09; 1. 以下关于GPU的特点描述不准确的是&#xff1a; A.GPU无法使用共享内存结构&#xff0c;提高通信速度 B.GPU的并行数据处理可以大幅度提高运算能力 C.GPU使用高速全局内存可以进一步提升运算速度 D.GPU的计算能力比CPU强 2.下列关…

技术架构-单机架构

前言 从今天开始系统学习 Docker 课程&#xff0c;总结下 Docker 是什么&#xff0c;用来做什么&#xff0c;架构是怎样的。 注&#xff1a;&#xff08;1&#xff09;当浏览器 / APP访问服务器时&#xff0c;如果服务器适用的时 http 协议&#xff0c;那么默认端口时80&#…

Learn runqlat in 5 minutes

内容预告 learn X in 5 系列第一篇. 本篇主要介绍进程时延统计方式和 rawtracepoint. runqlat "高负载场景下应用为何卡顿", "进程 A 为什么得不到调度". 当我们在工作生活中产生这样的疑问, 目标进程的调度时延是一个不错的观测切入点. runqlat 可以帮…

CentOs7 NAT模式连接网络

1.配置动态网络 1.1 检查主机网卡配置 检查主机的网络设置 进入控制面板&#xff0c;找到网络共享中心 查看适配器是否都已经开启 1.2 设置虚拟机的网络配置 打开虚拟机网络配置设置&#xff0c;对网卡VMnet8 进行设置 记住网关 全部选择应用&#xff0c;确定 1.3 设置…

数据结构:树的基本概念(二叉树,定义性质,存储结构)

目录 1.树1.基本概念1.空树2.非空树 2.基本术语1.结点之间的关系描述2.结点、树的属性描述3.有序树、无序树4.森林 3.树的常考性质 2.二叉树1.基本概念2.特殊二叉树1.满二叉树2.完全二叉树3.二叉排序树4.平衡二叉树 3.常考性质4.二叉树的存储结构1.顺序存储2.链式存储 1.树 1.…

PyTorch技术和深度学习——三、深度学习快速入门

文章目录 1.线性回归1&#xff09;介绍2&#xff09;加载自由泳冠军数据集3&#xff09;从0开始实现线性回归模型4&#xff09;使用自动求导训练线性回归模型5&#xff09;使用优化器训练线性回归模型 2.使用torch.nn模块构建线性回归模型1&#xff09;使用torch.nn.Linear训练…

文件改名:避免繁琐操作,利用筛选文件批量重命名技巧优化文件管理

在我们的日常生活和工作中&#xff0c;我们经常需要处理大量的文件&#xff0c;从文档、图片到音频和视频等。在这些情况下&#xff0c;一个高效的文件管理策略至关重要。文件重命名的必要性主要体现在两个方面。首先&#xff0c;对于大量文件&#xff0c;手动进行重命名不仅费…

邻接矩阵储存图实现深度优先遍历(C++)

目录 基本要求&#xff1a; 图的结构体&#xff1a; 图的构造&#xff1a; 图的深度优先&#xff08;DFS&#xff09;&#xff1a; 图的打印输出&#xff1a; 完整代码&#xff1a; 测试数据&#xff1a; 运行结果&#xff1a; 通过给出的图的顶点和边的信息&#xff0c…

Sprint Boot 学习路线 4

微服务 Spring Microservices是一个框架&#xff0c;它使用Spring框架更容易地构建和管理基于微服务的应用程序。微服务是一种架构风格&#xff0c;其中一个大型应用程序被构建为一组小型、独立可部署的服务。每个服务具有明确定义的职责&#xff0c;并通过API与其他服务通信。…

S7-1200PLC和SMART PLC开放式以太网通信(UDP双向通信)

S7-1200PLC的以太网通信UDP通信相关介绍还可以参考下面文章链接: 博途PLC开放式以太网通信TRCV_C指令应用编程(运动传感器UDP通信)-CSDN博客文章浏览阅读2.8k次。博途PLC开放式以太网通信TSENG_C指令应用,请参看下面的文章链接:博途PLC 1200/1500PLC开放式以太网通信TSEND_…

Flink之Table API SQL连接器

连接器 Table API & SQL连接器1.概述2.支持连接器 DataGen连接器1.概述2.SQL客户端执行3.Table API执行 FileSystem连接器1.创建FileSystem映射表2.创建source数据源表3.写入数据4.解决异常5.查询fileTable6.查看HDFS Kafka连接器1.添加kafka连接器依赖2.重启yarn-session、…

vue.cli 中怎样使用自定义的组件

目录 创建自定义组件 注册并使用自定义组件 全局注册自定义组件 使用 Props 传递数据 总结 前言 在Vue CLI中使用自定义组件是构建交互式和模块化Web应用的重要一环。Vue CLI为开发者提供了使用自定义组件的灵活性和简便性。通过Vue CLI&#xff0c;你可以创建、注册和使…

【算法练习Day45】最长公共子序列不相交的线最大子数组和

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 最长公共子序列不相交的线最…
最新文章