【C++】stack,queue和deque

stack的介绍

在这里插入图片描述

  1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
  2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定 的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
  3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下 操作:
    • empty:判空操作
    • back:获取尾部元素操作
    • push_back:尾部插入元素操作
    • pop_back:尾部删除元素操作
  4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器, 默认情况下使用deque。
    在这里插入图片描述

queue的介绍

在这里插入图片描述

  1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
  2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
  3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
    • empty:检测队列是否为空
    • size:返回队列中有效元素的个数
    • front:返回队头元素的引用
    • back:返回队尾元素的引用
    • push:在队列尾部入队列
    • pop:在队列头部出队列
  4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque。
    在这里插入图片描述

stack和queue的常用接口说明及简单演示

在这里插入图片描述
在这里插入图片描述
我们可以看到stack和queue中没有出现迭代器,是因为栈和队列的特性是先进后出和后进先出,不需要我们去遍历,如果我们能够遍历栈和队列,就会出问题,其特性就会被改变。

void test_stack() //FILO  --   frist in last out
{
	std::stack<int> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);
	while (!st.empty())
	{
		std::cout << st.top() << " ";
		st.pop();
	}
	std::cout << std::endl;
}

void test_queue() //FIFO  --   frist in frist out
{
	std::queue<int> q;
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);
	while (!q.empty())
	{
		std::cout << q.front() << " ";
		q.pop();
	}
	std::cout << std::endl;
}

stack 和 queue 的模拟实现

template<class T,class Container = std::deque<T>>
	class stack
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_back();
		}
		size_t size()
		{
			return _con.size();
		}
		T& top()
		{
			return _con.back();
		}
		bool empty()
		{
			return _con.empty();
		}
	private:
		Container _con;
	};
template<class T, class Container = std::deque<T>>
	class queue
	{
	public:
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.erase(_con.begin());
		}
		T& front()
		{
			return _con.front();
		}
		T& back()
		{
			return _con.back();
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}
	private:
		Container _con;
	};

容器适配器:deque

在这里插入图片描述
deque的优势:

  • 任意位置插入删除
  • 支持随机访问

可以说是list和vector的结合体,但是其也有不好的地方,下面我们就一起看看怎末个事:

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。在这里插入图片描述
其实deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
在这里插入图片描述
本质是开好多个小数组buffer,最前面小数组的buffer用来头插,最后小数组的buffer用来尾插,中间的数组就是存放中间数据了,只要一个小数组满了就再开一个小数组,小数组的大小都一样,都是存放n个数据。还有一个中控数组,是一个指针数组,每个元素指向每一个小数组的首元素地址。

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
在这里插入图片描述

  • cur指向当前所在的数据位置
  • first和last表示当前所在buffer的开始和结束
  • node指向中控数组中的指向当前所在缓冲区的结点指针。

对于当前所在buffer,让cur一直++就可以了,等到cur走到 last 时再++,node就指向下一个buffer的结点指针,然后再让 first 和 last 更新为下个buffer的头和尾,再让cur指向first就可已完成对数据的随机访问。

deque的缺陷:

  • 与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
  • 与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
  • 但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  • stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
  • 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长 时,deque不仅效率高,而且内存使用率高。

这样就结合了deque的优点,而完美的避开了其缺陷。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/135837.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ARM Linux 基础学习 / Linux Shell,必要命令全记录

编辑整理 by Staok。 本文部分内容摘自 “100ask imx6ull” 开发板的配套资料&#xff08;如 百问网的《嵌入式Linux应用开发完全手册》&#xff0c;在 百问网 imx6ull pro 开发板 页面 中的《2.1 100ASK_IMX6ULL_PRO&#xff1a;开发板资料》或《2.2 全系列Linux教程&#xf…

基于YOLOv8的输电线路异物识别算法应用

基于 YOLOv8 的输电线路异物识别算法应用 输电线路作为电力系统的重要一环&#xff0c;保证其安全稳定运行是十分必要的。由于长期暴露于室外&#xff0c;线路所面临的不安全因素繁多&#xff0c;异物入侵便是其中之一。异物可能会引起线路短路甚至诱发火灾&#xff0c;因此要加…

AIGC专栏8——EasyPhoto 视频领域拓展-让AIGC肖像动起来

AIGC专栏8——EasyPhoto 视频领域初拓展-让AIGC肖像动起来 学习前言源码下载地址技术原理储备Video Inference 功能说明 & 效果展示1、Text2Video功能说明a、实现原理简介b、文到视频UI介绍c、结果展示 2、Image2Video功能说明a、实现原理简介i、单图模式ii、首尾图模式 b、…

Technology Strategy Patterns 学习笔记9 - bringing it all together

1 Patterns Map 2 Creating the Strategy 2.1 Ansoff Growth Matrix 和owth-share Matrix 区别参见https://fourweekmba.com/bcg-matrix-vs-ansoff-matrix/ 3 Communicating

金和OA jc6 任意文件上传漏洞复现

0x01 产品简介 金和OA协同办公管理系统软件&#xff08;简称金和OA&#xff09;&#xff0c;本着简单、适用、高效的原则&#xff0c;贴合企事业单位的实际需求&#xff0c;实行通用化、标准化、智能化、人性化的产品设计&#xff0c;充分体现企事业单位规范管理、提高办公效率…

华为ensp:ospf末梢stub完全末梢totally Stub

现在宣告都宣告完了&#xff0c;现在要给area1做完全末梢 末梢区域 进入r2系统视图模式 ospf 1area 1 stub quit进入r1系统视图 ospf 1 area 1 stub quit 现在去r1上查看 末梢成功 完全末梢 进入r2系统视图 ospf 1 area 1stub no-summary 现在就成为完全末梢了&…

AI 绘画 | Stable Diffusion精确控制ControlNet扩展插件

ControlNet ControlNet是一个用于控制AI图像生成的插件&#xff0c;通过使用Conditional Generative Adversarial Networks&#xff08;条件生成对抗网络&#xff09;的技术来生成图像。它允许用户对生成的图像进行更精细的控制&#xff0c;从而在许多应用场景中非常有用&#…

基于Transformer架构的ChatGPT:三步带你了解它的工作原理

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 梦想从未散场&#xff0c;传奇永不落幕&#xff0c;博主会持续更新优质网络知识、Python知识、Linux知识以及各种小技巧&#xff0c;愿你我共同在CSDN进步 目录 一、Transformer架构 1. 自注意力层 2. 前馈神…

AWS云服务器EC2实例进行操作系统迁移

AWS云服务器EC2实例进行操作系统迁移 文章目录 AWS云服务器EC2实例进行操作系统迁移1. 亚马逊EC2云服务器简介1.2 亚马逊EC2云务器与弹性云服务器区别 2. 亚马逊EC2云服务器配置流程2.1 亚马逊EC2云服务器实例配置2.1.1 EC2实例购买教程2.1.1 EC2实例初始化配置2.1.2 远程登录E…

Flutter实践一:package组织

1.架构概览 为了降低Flutter工程里lib的复杂度&#xff0c;应尽量拆分一些代码成为独立的package。如图&#xff1a; 我们将通用的组件、领域模型、API、features、存储、repository等抽取成了单独的package。这时lib只剩下多国语言、基本的页面、路由等代码了&#xff1a; 这…

Linux组调度

为什么引入组调度可以参考这篇文章的讨论。核心原因是基础的调度算法都是基于任务的&#xff0c;如果用户A有10个任务&#xff0c;用户B只有1个任务&#xff0c;假设这些任务的优先级都相同&#xff0c;那么用户A得到的CPU时间将是用户B的10倍&#xff0c;这样从任务的角度看虽…

Linux应用开发基础知识——LCD上的矢量字体Freetype(六)

前言&#xff1a; 使用 buildroot 来给 ARM 板编译程序、编译库会很简单&#xff0c;以后系统讲解 buildroot 时再使用 buildroot&#xff0c;现在我们还是手工交叉编译 freetype&#xff0c;这种方法在编译、安装一些小程序时很有用。 Freetype 是开源的字体引擎库&#xff0c…

Java13新增特性

前言 前面的文章&#xff0c;我们对Java9、Java10、Java11、Java12 的特性进行了介绍&#xff0c;对应的文章如下 Java9新增特性 Java10新增特性 Java11新增特性 Java12新增特性 今天我们来一起看一下Java13这个版本的一些重要信息 版本介绍 Java 13 是在 2019 年 9 月 17 日…

recycleView(三)动态修改背景色

效果图 1.关键代码 1. // 定义一个变量来记录滑动的距离var scrollDistance 0// 在RecycleView的滑动监听器中更新滑动的距离binding.recyclerView.addOnScrollListener(object : RecyclerView.OnScrollListener() {override fun onScrolled(recyclerView: RecyclerView, …

PCB知识补充

系列文章目录 文章目录 系列文章目录参考文献PCB知识互连线电阻过孔/铜箔电流能力铜箔载流能力过孔载流能力 热设计电磁兼容及部分要求 参考文献 [1]牛森,张敏娟,银子燕.高速PCB多板互联的电源完整性分析[J].单片机与嵌入式系统应用,2023,23(09). [2]陈之秀,刘洋,张涵舒等.高…

通用结构化剪枝DepGraph

文章目录 0. 前言一. 第一部分: Torch-Pruning1.1 传统的剪枝流程 - ResNet-18结构化剪枝1.2 Torch-Pruning剪枝 - ResNet-18结构化剪枝1.3 Torch-Pruning剪枝 - 遍历所有分组1.4 Torch-Pruning剪枝 - 剪枝器 High-level Pruners1.5 Torch-Pruning剪枝 - 拓展到更复杂的神经网…

【递归】求根节点到叶节点数字之和(Java版)

目录 1.题目解析 2.讲解算法原理 3.代码 1.题目解析 LCR 049. 求根节点到叶节点数字之和 给定一个二叉树的根节点 root &#xff0c;树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字&#xff1a; 例如&#xff0c;从根节点到叶节点…

No179.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

开发者测试2023省赛--UnrolledLinkedList测试用例

测试结果 官方提交结果 EclEmma PITest 被测文件UnrolledLinkedList.java /** This source code is placed in the public domain. This means you can use it* without any restrictions.*/package net.mooctest;import java.util.AbstractList; import java.util.Collectio…

牛客网刷题笔记231112 最小k位数+二叉树层序遍历+SQL异常邮件概率

算法题牛客网NC119 最小的k个数 题目&#xff1a; 用了一下python列表的便利&#xff0c;不知道在面试时允许用不。当然最简单的方法其实是直接sort()一下取前k位数即可。本次写的思路如下&#xff1a; 用一个最大容量为k的列表存储结果&#xff0c;遍历n个元素&#xff0c;当…
最新文章