【干货分享】一文说透分布式一致性协议(上)

本文首发自「慕课网」,想了解更多IT干货内容,程序员圈内热闻,欢迎关注"慕课网"!

作者:大熊老师 | 慕课网讲师


在常见的分布式系统中,总会发生诸如机器宕机或网络异常(包括消息的延迟、丢失、重复、乱序,还有网络分区)等情况。

一致性算法需要解决的问题就是如何在一个可能发生上述异常的分布式系统中,快速且正确地在集群内部对某个数据的值达成一致,并且保证不论发生以上任何异常,都不会破坏整个系统的一致性。

CAP定理

CAP 理论告诉我们,一个分布式系统不可能同时满足一致性(C:Consistency),可用性(A: Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中的2个。

选项描述
一致性数据在多个副本之间能够保持一致的特性(严格的一致性).
可用性指系统提供的服务必须一直处于可用的状态,每次请求都能获取到非错的响应(但是不保证获取的数据为最新数据。)
分区容忍性分布式系统在遇到任何网络分区故障的时候,仍然能够对外提供满足一致性可用性的服务,除非整个网络环境都发生了故障。

Base理论

BASE:全称:Basically Available(基本可用),Soft state(软状态),和 Eventually consistent(最终一致性)。

Base 理论是对 CAP 中一致性和可用性权衡的结果,其来源于对大型互联网分布式实践的总结,是基于 CAP 定理逐步演化而来的。其核心思想是:既是无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。

解释一下:什么是软状态呢?相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种 “硬状态”。软状态指的是:允许系统中的数据存在中间状态,并认为该状态不影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时。

二阶段提交 2PC

二阶段提交协议(Two-phase Commit,即 2PC)是常用的分布式事务解决方案,即将事务的提交过程分为两个阶段来进行处理。在阶段二中,会根据阶段一的投票结果执行 2 种操作:执行事务提交,中断事务。

角色

  • ① 协调者:事务的发起者
  • ② 参与者:事务的执行者

阶段一

  • 事务询问:协调者向所有的参与者询问,是否准备好了执行事务,并开始等待各参与者的响应。
  • 执行事务:各参与者节点执行事务操作,并将 Undo 和 Redo 信息记入事务日志中。
  • 各参与者向协调者反馈事务询问的响应:如果参与者成功执行了事务操作,那么就反馈给协调者 Yes 响应,表示事务可以执行;如果参与者没有成功执行事务,就返回 No 给协调者,表示事务不可以执行。

阶段二

在阶段二中,会根据阶段一的投票结果执行 2 种操作:执行事务提交,中断事务。

执行事务提交步骤

  • 发送提交请求:协调者向所有参与者发出 commit 请求。
  • 事务提交:参与者收到 commit 请求后,会正式执行事务提交操作,并在完成提交之后释放整个事务执行期间占用的事务资源。
  • 反馈事务提交结果:参与者在完成事务提交之后,向协调者发送 Ack 信息。
  • 协调者接收到所有参与者反馈的 Ack 信息后,完成事务。

执行中断事务步骤

  • 发送回滚请求:协调者向所有参与者发出 Rollback 请求。
  • 事务回滚:参与者接收到 Rollback 请求后,会利用其在阶段一种记录的 Undo 信息来执行事务回滚操作,并在完成回滚之后释放在整个事务执行期间占用的资源。
  • 反馈事务回滚结果:参与者在完成事务回滚之后,想协调者发送 Ack 信息。
  • 中断事务:协调者接收到所有参与者反馈的 Ack 信息后,完成事务中断。

CASE1 执行提交

CASE2 执行回滚

二阶段提交缺点

二阶段提交看起来确实能够提供原子性的操作,但是不幸的事,二阶段提交还是有几个缺点的:

  1. 阻塞问题: 2PC的提交在执行过程中,所有参与事务操作的逻辑都处于阻塞状态,也就是说,各个参与者都在等待其他参与者响应,无法进行其他操作;

  2. 单点问题: 协调者是个单点,一旦出现问题,其他参与者将无法释放事务资源,也无法完成事务操作;

  3. 数据不一致。当执行事务提交过程中,如果协调者向所有参与者发送Commit请求后,发生局部网络异常或者协调者在尚未发送完Commit请求,即出现崩溃,最终导致只有部分参与者收到、执行请求。于是整个系统将会出现数据不一致的情形;

  4. 保守。2PC没有完善的容错机制,当参与者出现故障时,协调者无法快速得知这一失败,只能严格依赖超时设置来决定是否进一步的执行提交还是中断事务。

由于二阶段提交存在着诸如同步阻塞、单点问题、脑裂等缺陷,所以,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。

三阶段提交3PC

三阶段提交(Three-phase commit),也叫三阶段提交协议(Three-phase commit protocol),是二阶段提交(2PC)的改进版本。

与两阶段提交不同的是,三阶段提交有两个改动点。

  • 引入超时机制。同时在协调者和参与者中都引入超时机制。
  • 在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。

也就是说,除了引入超时机制之外,3PC把2PC的准备阶段再次一分为二,这样三阶段提交就有CanCommit、PreCommit、DoCommit三个阶段。

CanCommit阶段

3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。

  1. 事务询问 协调者向参与者发送CanCommit请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。
  2. 响应反馈 参与者接到CanCommit请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回Yes响应,并进入预备状态。否则反馈No

PreCommit阶段

协调者根据canCommit阶段参与者的反应情况来决定是否可以继续事务的PreCommit操作。根据响应情况,有以下两种可能。

假如协调者在CanCommit阶段从所有的参与者获得的反馈都是Yes响应,那么就会执行事务的预执行。

  1. 发送预提交请求 :协调者向参与者发送PreCommit请求,并进入Prepared阶段。
  2. 事务预提交 :参与者接收到PreCommit请求后,会执行事务操作,并将undo和redo信息记录到事务日志中。
  3. 响应反馈 :如果参与者成功的执行了事务操作,则返回ACK响应,同时开始等待最终指令。

假如canCommit阶段有任何一个参与者向协调者发送了No响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。

  1. 发送中断请求: 协调者向所有参与者发送abort请求。
  2. 中断事务: 参与者收到来自协调者的abort请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

doCommit阶段

该阶段进行真正的事务提交,也可以分为以下两种情况。

执行提交

  1. 发送提交请求: 协调接在preCommit阶段收到参与者发送的ACK响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送doCommit请求。
  2. 事务提交: 参与者接收到doCommit请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
  3. 响应反馈: 事务提交完之后,向协调者发送Ack响应。
  4. 完成事务: 协调者接收到所有参与者的ack响应之后,完成事务。

中断事务协调者在preCommit阶段没有接收到参与者发送的ACK响应(可能是接受者发送的不是ACK响应,也可能响应超时),那么就会执行中断事务。

  1. 发送中断请求: 协调者向所有参与者发送abort请求
  2. 事务回滚: 参与者接收到abort请求之后,利用其在阶段二记录的undo信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
  3. 反馈结果: 参与者完成事务回滚之后,向协调者发送ACK消息4.中断事务 协调者接收到参与者反馈的ACK消息之后,执行事务的中断。

在doCommit阶段,如果参与者无法及时接收到来自协调者的doCommit或者abort请求时,会在等待超时之后,会继续进行事务的提交。(其实这个应该是基于概率来决定的,当进入第三阶段时,说明参与者在第二阶段已经收到了PreCommit请求,那么协调者产生PreCommit请求的前提条件是他在第二阶段开始之前,收到所有参与者的CanCommit响应都是Yes。(一旦参与者收到了PreCommit,意味他知道大家其实都同意修改了)所以,一句话概括就是,当进入第三阶段时,由于网络超时等原因,虽然参与者没有收到commit或者abort响应,但是他有理由相信:成功提交的几率很大。)

三阶段提交优缺点:

3PC有效降低了2PC带来的参与者阻塞范围,并且能够在出现单点故障后继续达成一致;
但3PC带来了新的问题,在参与者收到preCommit消息后,如果网络出现分区,协调者和参与者无法进行后续的通信,这种情况下,参与者在等待超时后,依旧会执行事务提交,这样会导致数据的不一致。

Paxos算法

像 2PC 和 3PC 都需要引入一个协调者的角色,当协调者 down 掉之后,整个事务都无法提交,参与者的资源都出于锁定的状态,对于系统的影响是灾难性的,而且出现网络分区的情况,很有可能会出现数据不一致的情况。有没有不需要协调者角色,每个参与者来协调事务呢,在网络分区的情况下,又能最大程度保证一致性的解决方案呢。此时 Paxos 出现了。

Paxos 算法是 Lamport 于 1990 年提出的一种基于消息传递的一致性算法。由于算法难以理解起初并没有引起人们的重视,Lamport在八年后重新发表,即便如此Paxos算法还是没有得到重视。2006 年 Google 的三篇论文石破天惊,其中的 chubby 锁服务使用Paxos 作为 chubbycell 中的一致性,后来才得到关注。

Paxos 协议是一个解决分布式系统中,多个节点之间就某个值(提案)达成一致(决议)的通信协议。它能够处理在少数节点离线的情况下,剩余的多数节点仍然能够达成一致。即每个节点,既是参与者,也是决策者

Paxos角色

Paxos 协议的角色 主要有三类节点:

  • 提议者(Proposer):提议一个值;
  • 接受者(Acceptor):对每个提议进行投票;
  • 告知者(Learner):被告知投票的结果,不参与投票过程。

算法描述

- 第一阶段

   [a]: Proposer提出提案,編号Mn,并向过半数Acceptor发送編号Mn的Prepare请求。
   [b]: 如果Acceptor收到的Prepare请求的编号Mn > 其己答复的任何Prepare请求的编号,则Acceptor对该请求作出答复,并承诺不接受任何编号小于編号Mn的提案

- 第二阶段

   [a]: 如果Proposer从过半数Acceptor处收到对其Prepare请求(編号n)的响应,则向这些Acceptor发送一个Accept请求[Mn,Vn],其中Vn是响应中编号最高的提案的值,或者如果响应报  告没有提案,则Vn是任何值。
   [b]:如果Acceptor收到Accept请求[Mn,Vn],若该Acceptor尚未对编号大于Mn的Prepare请求作出过响应,则通提案。

正常情况的提案选择

情况1:S3先Accept S1的值,已返回Accept的ack,再见到S5的提案

关键点,S3 也接到了 S5 的prepare 提案,这时是否会有不一致的情况呢?

S3会把之前已接收的提案变号1和值x答复给S5,S5会替换Y为X然后应用编号2,x进行广播。

情况2:s3先Accept S1的值,再见到S5的提案,再返回Accept的ack

**关键点:**S3 也接到了 S5 prepare 提案,这时是否会有不一致的情况呢?

情况3:S3 还未经历 Accept 阶段时,就拿到了 S5 的 prepare 提案

关键点,S3 还未经历 Accept 阶段时,就拿到了 S5 的 prepare 提案,这时是否会有不一致的情况呢?

这种情况下S1的提案会应用失败,需要重新发起新的一轮提案。

情况4:形成活锁

原始的Paxos算法(Basic Paxos)只能对一个值形成决议,决议的形成至少需要两次网络来回,在高并发情况下可能需要更多的网络来回,极端情况下甚至可能形成活锁。

Paxos 是允许多个 Proposer 的,因此如果按上图所示运行,则后一个提案总会让前面提案选中失败,显然死循环。


欢迎关注「慕课网」帐号,我们会一直坚持内容原创,提供IT圈优质内容,分享干货知识,大家一起共同成长吧!

本文原创发布于慕课网 ,转载请注明出处,谢谢合作

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/15996.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据备份系列:Rsync 备份详解(一)

一、Rsync 简介 1.1 Rsync 是一个远程增量文件备份软件工具 1.2 Rsync 的特性 支持拷贝特殊文件,如连接文件、设备等。可以有排除指定文件或目录同步的功能,相当于打包命令 tar 的排除功能。可以做到保持原文件或目录的权限、时间、软硬链接、属主、组…

Python每日一练(20230502)

目录 1. 被围绕的区域 🌟🌟 2. 两数之和 II 🌟 3. 二叉树展开为链表 🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 1…

react native ios 添加启动页 xcode14 react-native-splash-screen

最近更新xcode,有些配置有些不同,网上查的方法都是过时的,导致配了一段时间卡在这里,最后访问官网才弄好了,所以以后解决问题的办法先看官网再查其他各路神仙的办法。 官网的步骤:https://github.com/crazy…

颜色空间转换RGB-YCbCr

颜色空间 颜色空间(Color Space)是描述颜色的一种方式,它是一个由数学模型表示的三维空间,通常用于将数字表示的颜色转换成可见的颜色。颜色空间的不同取决于所选的坐标轴和原点,以及用于表示颜色的色彩模型。在计算机…

【C++入门】一篇搞懂auto关键字

个人主页:平行线也会相交 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【C之路】 目录 作用不那么大的场景auto真正的价值auto和指针结合使用注意点auto不能推导的场景范围for范围for的使用条件 作用不那么大的…

海尔牵头IEEE P2786国际标准通过Sponsor投票并连任工作组主席

01 海尔牵头IEEE P2786国际标准 通过Sponsor投票 并连任工作组主席 海尔牵头制定的全球首个服装物联网国际标准IEEE P2786《Standard for General Requirements and Interoperability for Internet of Clothing》通过Sponsor投票,标志着该国际标准草案得到了行业…

2.6 浮点运算方法和浮点运算器

学习目标: 以下是一些具体的学习目标: 理解浮点数的基本概念和表示方法,包括符号位、指数和尾数。学习浮点数的运算规则和舍入规则,包括加、减、乘、除、开方等。了解浮点数的常见问题和误差,例如舍入误差、溢出、下…

FPGA实现10G万兆网UDP通信 10G Ethernet Subsystem替代网络PHY芯片 提供工程源码和技术支持

目录 1、前言2、我这里已有的UDP方案3、详细设计方案传统 FPGA UDP 方案本 FPGA 10G UDP 方案(牛逼)10G Ethernet 框图10G Ethernet 发送解析10G Ethernet 接收解析10G Ethernet 寄存器配置10G Ethernet UI 配置 4、vivado工程详解5、上板调试验证并演示ping功能测试数据收发测…

一款支持全文检索、工作流审批、知识图谱的企事业知识库

一、项目介绍 一款全源码,可二开,可基于云部署、私有部署的企业级知识库云平台,一款让企业知识变为实打实的数字财富的系统,应用在需要进行文档整理、分类、归集、检索、分析的场景。 获取方式q:262086839 为什么建立知识库平台&…

perf record对C++程序耗时进行分析

本节将介绍如何使用perf工具的perf record对C代码进行性能分析,一切操作都是在ubuntu 20下进行。 perf工具安装 由于perf工具和内核版本有关,因此直接安装容易出错,建议直接通过如下指令安装: sudo apt-get install linux-tool…

00后卷王的自述,我难道真的很卷?

前言 前段时间去面试了一个公司,成功拿到了offer,薪资也从12k涨到了18k,对于工作都还没两年的我来说,还是比较满意的,毕竟一些工作3、4年的可能还没我高。 我可能就是大家说的卷王,感觉自己年轻&#xff…

独立IP服务器和共享IP服务器有什么区别

在选择一个合适的服务器时,最常见的选择是共享IP服务器和独立IP服务器。尽管两者看起来很相似,但它们有着很大的不同。本文将详细介绍共享IP服务器和独立IP服务器的不同之处,以及如何选择适合您需求的服务器。 一、什么是共享IP服务器? 共享…

Python探索性P图,四种增强方式快速玩转pillow库

嗨害大家好鸭!我是爱摸鱼的芝士❤ 我们平时使用一些图像处理软件时, 经常会看到其对图像的亮度、对比度、色度或者锐度进行调整。 你是不是觉得这种技术的底层实现很高大上? 其实最基础的实现原理, 用 Python 实现只需要几行…

Java JDK下载安装环境变量配置

目录 一、下载安装 1.简介 2.JDK下载JDK 官网海外历史地址: 3.安装 二、环境变量配置 1.新建JAVA_HOME变量 2.PATH变量 3.CLASSPATH 变量 4.测试是否安装成功 一、下载安装 1.简介 JDK 是SUN公司提供的一套Java 语言的软件开发工具包,简称JDK(JavaDevelo…

如何编写高质量代码

如何编写高质量代码 1. 前言2. 明确业务场景和用户需求3. 编程实践技巧3.1 提高命名规范3.2 保持代码简洁3.3 好的注释 4. 软件测试5. 总结 1. 前言 现代软件开发中,代码是构建高质量软件的核心。高质量代码能够提高软件系统的可靠性、可维护性和可扩展性&#xff…

给失业的互联网人一个思路:别再苦苦找工作了,要去找门槛低、现金流好、天花板低、资本看不上的创业项目,一年也能几百万!...

失业大潮中的互联网人该何去何从?这大概是许多人在难捱的深夜反复思考的问题。 一位失业很久的网友就在痛苦思索中悟出了适合自己的道路,下面分享给大家,篇幅太长,小编给大家划一下重点。 先说结论:失业的互联网人别再…

浅谈软件测试工程师的技能树

软件测试工程师是一个历史很悠久的职位,可以说从有软件开发这个行业以来,就开始有了软件测试工程师的角色。随着时代的发展,软件测试工程师的角色和职责也在悄然发生着变化,从一开始单纯的在瀑布式开发流程中担任测试阶段的执行者…

优思学院:什么是快速改善方法(Kaizen Blitz)?

什么是快速改善方法(Kaizen Blitz)? Kaizen blitz是精益管理中的一种方法,指通过集中一段时间内的团队努力来实现快速改进的方法。 Kaizen是一个日语词汇,意为“改善”,是一种广泛应用于企业管理的哲学&a…

明确自动化测试目的

明确自动化测试目的 1.提高测试人员的工作成就感和幸福感,减少手工测试中重复性的工作 目前,在大部分中小企业中,手工测试在日常测试工作占据的比例很大。测试人员必须跟随开发团队不断地进行选代式开发和测试。一个功能模块可能在整个测试周…

SEO机制算是让我玩明白了

获取当前时间时间戳,返回遵循ISO 8601扩展格式的日期 new Date(Date.now()).toISOString() 使用moment库转换回来 this.moment(new Date(Date.now()).toISOString()).format("YYYY-MM-DD") js去掉富文本中html标签和图片 filterHtmlTag(val) {if(!val){…