庖丁解牛:NIO核心概念与机制详解

文章目录

  • Pre
  • 输入/输出
  • Why NIO
  • 流与块的比较
  • 通道和缓冲区
    • 概述
    • 什么是缓冲区?
    • 缓冲区类型
    • 什么是通道?
    • 通道类型
  • NIO 中的读和写
    • 概述
    • Demo : 从文件中读取
      • 1. 从FileInputStream中获取Channel
      • 2. 创建ByteBuffer缓冲区
      • 3. 将数据从Channle读取到Buffer中
    • Demo : 写入文件
      • 1. 从 FileOutputStream 获取一个通道
      • 2. 创建ByteBuffer缓冲区,写入数据
      • 3. 写入缓冲区
    • Demo : 读写结合

在这里插入图片描述


Pre

NIO 库是在 JDK 1.4 中引入的。NIO 弥补了原来的 I/O 的不足,它在标准 Java 代码中提供了高速的、面向块的 I/O。通过定义包含数据的类,以及通过以块的形式处理这些数据,NIO 不用使用本机代码就可以利用低级优化,这是原来的 I/O 包所无法做到的。


输入/输出

I/O 或者输入/输出指的是计算机与外部世界或者一个程序与计算机的其余部分的之间的接口。它对于任何计算机系统都非常关键,因而所有 I/O 的主体实际上是内置在操作系统中的。单独的程序一般是让系统为它们完成大部分的工作。

在 Java 编程中,直到最近一直使用 流 的方式完成 I/O。所有 I/O 都被视为单个的字节的移动,通过一个称为 Stream 的对象一次移动一个字节。流 I/O 用于与外部世界接触。它也在内部使用,用于将对象转换为字节,然后再转换回对象。

NIO 与原来的 I/O 有同样的作用和目的,但是它使用不同的方式 块 I/O。 块 I/O 的效率可以比流 I/O 高许多。


Why NIO

NIO 的创建目的是为了让 Java 程序员可以实现高速 I/O 而无需编写自定义的本机代码。NIO 将最耗时的 I/O 操作(即填充和提取缓冲区)转移回操作系统,因而可以极大地提高速度。


流与块的比较

原来的 I/O 库(在 java.io.*中) 与 NIO 最重要的区别是数据打包和传输的方式。正如前面提到的,原来的 I/O 以流的方式处理数据,而 NIO 以块的方式处理数据。

面向流 的 I/O 系统一次一个字节地处理数据。一个输入流产生一个字节的数据,一个输出流消费一个字节的数据。为流式数据创建过滤器非常容易。链接几个过滤器,以便每个过滤器只负责单个复杂处理机制的一部分,这样也是相对简单的。不利的一面是,面向流的 I/O 通常相当慢。

一个 面向块 的 I/O 系统以块的形式处理数据。每一个操作都在一步中产生或者消费一个数据块。按块处理数据比按(流式的)字节处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。


通道和缓冲区

概述

通道 和 缓冲区 是 NIO 中的核心对象,几乎在每一个 I/O 操作中都要使用它们。

  • 通道是对原 I/O 包中的流的模拟。到任何目的地(或来自任何地方)的所有数据都必须通过一个 Channel 对象。
  • 一个 Buffer 实质上是一个容器对象。发送给一个通道的所有对象都必须首先放到缓冲区中;同样地,从通道中读取的任何数据都要读到缓冲区中。

什么是缓冲区?

Buffer 是一个对象, 它包含一些要写入或者刚读出的数据。 在 NIO 中加入 Buffer 对象,体现了新库与原 I/O 的一个重要区别。在面向流的 I/O 中,您将数据直接写入或者将数据直接读到 Stream 对象中。

在 NIO 库中,所有数据都是用缓冲区处理的。在读取数据时,它是直接读到缓冲区中的。在写入数据时,它是写入到缓冲区中的。任何时候访问 NIO 中的数据,您都是将它放到缓冲区中。

缓冲区实质上是一个数组。通常它是一个字节数组,但是也可以使用其他种类的数组。但是一个缓冲区不 仅仅 是一个数组。缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程


缓冲区类型

最常用的缓冲区类型是 ByteBuffer。一个 ByteBuffer 可以在其底层字节数组上进行 get/set 操作(即字节的获取和设置)。

ByteBuffer 不是 NIO 中唯一的缓冲区类型。

事实上,对于每一种基本 Java 类型都有一种缓冲区类型:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
    DoubleBuffer

每一个 Buffer 类都是 Buffer 接口的一个实例。 除了 ByteBuffer,每一个 Buffer 类都有完全一样的操作,只是它们所处理的数据类型不一样。因为大多数标准 I/O 操作都使用 ByteBuffer,所以它具有所有共享的缓冲区操作以及一些特有的操作


什么是通道?

Channel是一个对象,可以通过它读取和写入数据。拿 NIO 与原来的 I/O 做个比较,通道就像是流

正如前面提到的,所有数据都通过 Buffer 对象来处理。您永远不会将字节直接写入通道中,相反,您是将数据写入包含一个或者多个字节的缓冲区。同样,您不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节


通道类型

通道与流的不同之处在于**通道是双向的。**而流只是在一个方向上移动(一个流必须是 InputStream 或者 OutputStream 的子类), 而 通道 可以用于读、写或者同时用于读写

因为它们是双向的,所以通道可以比流更好地反映底层操作系统的真实情况。特别是在 UNIX 模型中,底层操作系统通道是双向的。


NIO 中的读和写

概述

读和写是 I/O 的基本过程。从一个通道中读取很简单:只需创建一个缓冲区,然后让通道将数据读到这个缓冲区中。写入也相当简单:创建一个缓冲区,用数据填充它,然后让通道用这些数据来执行写入操作。


Demo : 从文件中读取

从一个文件中读取一些数据。如果使用原来的 I/O,那么我们只需创建一个 FileInputStream 并从它那里读取。而在 NIO 中,情况稍有不同:我们首先从 FileInputStream 获取一个 Channel 对象,然后使用这个通道来读取数据。

在 NIO 系统中,任何时候执行一个读操作,都是从通道中读取,但不是直接从通道读取。因为所有数据最终都驻留在缓冲区中,所以您是从通道读到缓冲区中。

因此读取文件涉及三个步骤:

  • (1) 从 FileInputStream 获取 Channel
  • (2) 创建 Buffer
  • (3) 将数据从 Channel 读到 Buffer 中

1. 从FileInputStream中获取Channel

第一步是获取通道。我们从 FileInputStream 获取通道:

FileInputStream fin = new FileInputStream( "readandshow.txt" );
FileChannel fc = fin.getChannel();

2. 创建ByteBuffer缓冲区

下一步是创建缓冲区:

ByteBuffer buffer = ByteBuffer.allocate( 1024 );

3. 将数据从Channle读取到Buffer中

最后,需要将数据从通道读到缓冲区中,如下所示:

fc.read( buffer );

注意:我们不需要告诉通道要读 多少数据 到缓冲区中。每一个缓冲区都有复杂的内部统计机制,它会跟踪已经读了多少数据以及还有多少空间可以容纳更多的数据。更多请继续往下看关于缓冲区内部细节 中介绍更多关于缓冲区统计机制的内容。


Demo : 写入文件

1. 从 FileOutputStream 获取一个通道

在 NIO 中写入文件类似于从文件中读取。首先从 FileOutputStream 获取一个通道:

FileOutputStream fout = new FileOutputStream( "writesomebytes.txt" );
FileChannel fc = fout.getChannel();

2. 创建ByteBuffer缓冲区,写入数据

下一步是创建一个缓冲区并在其中放入一些数据 。

在这里,数据将从一个名为 message 的数组中取出,这个数组包含字符串 "Some bytes" 的 ASCII 字节(下面会解释 buffer.flip() 和 buffer.put() 调用)。

ByteBuffer buffer = ByteBuffer.allocate( 1024 );
 
for (int ii=0; ii<message.length; ++ii) {
     buffer.put( message[ii] );
}
buffer.flip();

3. 写入缓冲区

最后一步是写入缓冲区中:

fc.write( buffer );

<font color=brown注意在这里同样不需要告诉通道要写入多数据。缓冲区的内部统计机制会跟踪它包含多少数据以及还有多少数据要写入。


Demo : 读写结合

下面我们将看一下在结合读和写时会有什么情况。

我们以一个名为 CopyFile.java 的简单程序作为这个练习的基础,它将一个文件的所有内容拷贝到另一个文件中。CopyFile.java 执行三个基本操作:

  • 首先创建一个 Buffer
  • 然后从源文件中将数据读到这个缓冲区中
  • 然后将缓冲区写入目标文件。

这个程序不断重复 ― 读、写、读、写 ― 直到源文件结束。

CopyFile 程序我们看看如何检查操作的状态,以及如何使用 clear() 和 flip() 方法重设缓冲区,并准备缓冲区以便将新读取的数据写到另一个通道中。

package com.artisan.nio;

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

/**
 * @author 小工匠
 * @version 1.0
 * @mark: show me the code , change the world
 */
public class CopyFile {

    public static  void main( String args[] ) throws Exception {


        // 创建文件输入流和文件输出流
        FileInputStream fin = new FileInputStream( "boot-netty/src/main/resources/a.txt" );
        FileOutputStream fout = new FileOutputStream( "boot-netty/src/main/resources/c.txt" );


        // 创建文件输入流和文件   输出流
        FileChannel fcin = fin.getChannel();
        FileChannel fcout = fout.getChannel();

        // 创建文件输入流和文件输出流
        ByteBuffer buffer = ByteBuffer.allocate( 1024 );

        // 创建文件输入流和文件输出流
        while (true) {
            // 清空缓冲区
            buffer.clear();

            // 清空缓冲区
            int r = fcin.read( buffer );

            // 清空缓冲区
            if (r==-1) {
                break;
            }
            // 反转缓冲区,准备写入数据
            buffer.flip();

            // 将缓冲区的数据写入到文件输出流
            fcout.write( buffer );
        }
    }
}
    

程序解读:

【运行 CopyFile 例子】

因为缓冲区会跟踪它自己的数据,所以 CopyFile 程序的内部循环 (inner loop) 非常简单,如下所示:

fcin.read( buffer );
fcout.write( buffer );

第一行将数据从输入通道 fcin 中读入缓冲区,第二行将这些数据写到输出通道 fcout 。


【检查状态】

下一步是检查拷贝何时完成。当没有更多的数据时,拷贝就算完成,并且可以在 read() 方法返回 -1 是判断这一点,如下所示:

int r = fcin.read( buffer );
 
if (r==-1) {
     break;
}

【 重设缓冲区】

最后,在从输入通道读入缓冲区之前,我们调用 clear() 方法。同样,在将缓冲区写入输出通道之前,我们调用 flip() 方法,如下所示:

buffer.clear();
int r = fcin.read( buffer );
 
if (r==-1) {
     break;
}
 
buffer.flip();
fcout.write( buffer );
  • clear() 方法重设缓冲区,使它可以接受读入的数据。
  • flip() 方法让缓冲区可以将新读入的数据写入另一个通道。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/160888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis维护缓存的方案选择

Redis中间件常常被用作缓存&#xff0c;而当使用了缓存的时候&#xff0c;缓存中数据的维护&#xff0c;往往是需要重点关注的&#xff0c;尤其是重点考虑的是数据一致性问题。以下是维护数据库缓存的一些常用方案。 1、先删除缓存&#xff0c;再更新数据库 导致数据不一致的…

LLM大模型4位量化实战【GPTQ】

权重量化方面的最新进展使我们能够在消费类硬件上运行大量大型语言模型&#xff0c;例如 RTX 3090 GPU 上的 LLaMA-30B 模型。 这要归功于性能下降最小的新型 4 位量化技术&#xff0c;例如 GPTQ、GGML 和 NF4。 在上一篇文章中&#xff0c;我们介绍了简单的 8 位量化技术和出…

算法通关村第十关-青铜挑战快速排序

大家好我是苏麟,今天带来快速排序 . 快速排序 单边快速排序(lomuto 洛穆托分区方案) 单边循环 (lomuto分区) 要点 : 选择最右侧元素作为基准点j 找比基准点小的&#xff0c;i 找比基准点大的&#xff0c;一旦找到&#xff0c;二者进行交换。 交换时机: 找到小的&#xff0c…

魔术《4 Kings 折纸》的三重境界(四)——魔术效果的突破

‍ ‍早点关注我&#xff0c;精彩不错过&#xff01; 在前三篇文章里&#xff0c;我们解释清楚了分别基于奇偶性&#xff0c;集合和群论来解释《4 Kings 折纸》这个魔术的过程&#xff0c;详情请戳&#xff1a; 魔术《4 Kings 折纸》的三重境界&#xff08;三&#xff09;——群…

【限时免费】20天拿下华为OD笔试之 【前缀和】2023B-最大子矩阵和【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录 题目描述与示例题目描述输入描述输出描述示例输入输出说明 解题思路如何表示一个子矩阵暴力解法二维前缀和优化二维前缀和矩阵的构建 代码解法一&#xff1a;二维前缀和PythonJavaC时空复杂度 解法二&#xff1a;暴力解法&#xff08;不推荐&#xff09;PythonJavaC时…

Springboot 项目启动类放置位置

文章目录 Springboot 项目启动类放置位置springboot 默认包扫描机制启动类放在特定位置springboot 启动注解理解配置启动类扫描特定的包1、 ComponentScan2、利用 SpringBootApplication 注解的 scanBasePackages 属性 Springboot 项目启动类放置位置 如果我们使用 IDEA 或者 …

常见面试题-MySQL的Explain执行计划

了解 Explain 执行计划吗&#xff1f; 答&#xff1a; explain 语句可以帮助我们查看查询语句的具体执行计划。 explain 查出来的各列含义如下&#xff1a; id&#xff1a;在一个大的查询语句中&#xff0c;每个 select 关键字都对应一个唯一的 id select_type&#xff1a;…

jdk1.8配置tomcat9教程

文章目录 前言报错&尝试解决运行 前言 最近在学习SpringMVC框架&#xff0c;但是里面需要用到Tocmat服务器。作为0基础Java选手&#xff0c;直接找了个视频里面的tomcat包下载。 里面的版本是apache-tomcat-8.5.68-windows-x64.zip的&#xff0c;然后就开始疯狂的各种博客…

巧用SqlServer数据库实现邮件自动发送功能

使用数据库发送邮件需要三个步骤&#xff0c;配置数据库的邮件服务、编写存储过程、设置SQL作业&#xff0c;接下来开始逐步分享&#xff1a; 配置数据库邮件&#xff1a; 在SqlServer左侧菜单栏中&#xff0c;找到管理页签中数据库邮件选项&#xff1a; 接下来开始配置数据库…

wpf devexpress自定义编辑器

打开前一个例子 步骤1-自定义FirstName和LastName编辑器字段 如果运行程序&#xff0c;会通知编辑器是空。对于例子&#xff0c;这两个未命名编辑器在第一个LayoutItem(Name)。和最终用户有一个访客左右编辑器查阅到First Name和Last Name字段&#xff0c;分别。如果你看到Go…

验证码案例 —— Kaptcha 插件介绍 后端生成验证码,前端展示并进行session验证(带完整前后端源码)

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信你对这篇博客也感兴趣o (ˉ▽ˉ&#xff1b;) &#x1f4dc;表白墙/留言墙 —— 中级SpringBoot项目&#xff0c;MyBatis技术栈MySQL数据库开发&#xff0c;练手项目前后端开发(带完整源码) 全方位全步骤手…

力扣每日一题-数位和相等数对的最大和-2023.11.18

力扣每日一题&#xff1a;数位和相等数对的最大和 开篇 这道每日一题还是挺需要思考的&#xff0c;我绕晕了好久&#xff0c;根据题解的提示才写出来。 题目链接:2342.数位和相等数对的最大和 题目描述 代码思路 1.创建一个数组存储每个数位的数的最大值&#xff0c;创建一…

OpenShift 4 - 就地调整 Pod 资源使用量

《OpenShift / RHEL / DevSecOps 汇总目录》 说明&#xff1a;本文已经在 OpenShift 4.14 的环境中验证 文章目录 为什么需要就地调整 Pod 资源启动 InPlacePodVerticalScaling 特性实现就地调整 Pod 资源参考 为什么需要就地调整 Pod 资源 以往在 Kubernetes 中调整 Pod 的 …

CentOS 7搭建Gitlab流程

目录 1、查询docker镜像gitlab-ce 2、拉取镜像 3、查询已下载的镜像 4、新建gitlab文件夹 5、在gitlab文件夹下新建相关文件夹 6、创建运行gitlab的容器 7、查看docker容器 8、根据Linux地址访问gitlab 9、进入docker容器&#xff0c;设置用户名的和密码 10、登录git…

如何从回收站恢复已删除的文件

我们在各个领域都使用计算机。无论是专业工作还是个人工作&#xff0c;我们在生活中总能找到计算机的用途。因此&#xff0c;我们在很大程度上依赖于我们的计算机。计算机是办公室和企业部门使用的高效机器。 人们使用个人计算机发送电子邮件、创建文档、听音乐和观看视频等等…

企业要做大模型落地?建议进来看看这个榜单

机器幻觉问题&#xff0c;可能是未来相当长一段时间内悬浮在大模型领域上方的两片乌云之一。遥记半年前&#xff0c;LeCun 就曾断言&#xff1a;“单纯根据概率生成自回归的大语言模型&#xff0c;根本解决不了幻觉、错误的问题&#xff0c;GPT模型活不过5年”。 当然&#xff…

红队攻防之特殊场景上线cs和msf

倘见玉皇先跪奏&#xff1a;他生永不落红尘 本文首发于先知社区&#xff0c;原创作者即是本人 网络拓扑图 一、msf正向木马拿不出网域控shell msf生成木马 msfvenom -p windows/x64/meterpreter/bind_tcp lport4444 -f raw -o msf1.bin用msfvenom生成一个正向马传进去&…

cs与msf联动

实验环境 cs4.4(4.5版本不知道为啥实现不了) cs服务器与msf在同一台vps上 本地win7虚拟机 cs派生会话给msf 首先cs正常上线win7&#xff0c;这就不多说了&#xff0c;然后说如何将会话派生给msf cs准备 选择Foreign&#xff0c;这里可以选HTTP&#xff0c;也可以选HTTPS…

RK3568驱动指南|第七篇 设备树-第67章 of操作函数实验:获取属性

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

springBoot中starter

springBoot项目中引入starter 项目引入xxljob&#xff0c;仅需要导入对应的starter包&#xff0c;即可进行快速开发 <dependency><groupId>com.ydl</groupId><artifactId>xxl-job-spring-boot-starter</artifactId><version>0.0.1-SNAPS…
最新文章