垃圾收集器的种类及概述

1.JVM参数

1.1标准参数所有jdk版本通用参数

-version
-help
-server
-cp

1.2-X参数

非标准参数,也就是在JDK各个版本中可能会变动

-Xint     解释执行
-Xcomp    第一次使用就编译成本地代码
-Xmixed   混合模式,JVM自己来决定

1.3 -XX参数

使用得最多的参数类型
非标准化参数,相对不稳定,主要用于JVM调优和Debug

1.3.1Boolean类型

格式:-XX:[+-]<name>            +或-表示启用或者禁用name属性
比如:-XX:+UseConcMarkSweepGC   表示启用CMS类型的垃圾回收器
     -XX:+UseG1GC              表示启用G1类型的垃圾回收器

1.3.2非Boolean类型

格式:-XX<name>=<value>表示name属性的值是value
比如:-XX:MaxGCPauseMillis=500

1.4 其他参数

-Xms1000M等价于-XX:InitialHeapSize=1000M
-Xmx1000M等价于-XX:MaxHeapSize=1000M
-Xss100等价于-XX:ThreadStackSize=100

所以这块也相当于是-XX类型的参数

1.5查看参数

java -XX:+PrintFlagsFinal -version > flags.txt

 值得注意的是"="表示默认值,":="表示被用户或JVM修改后的值,有些我们自己没有修改的也有:这是因为jvm在运行时会自己适配,mangeable就表示实时修改的,一般要设置参数,可以先查看一下当前参数是什么,然后进行修改。

1.6设置参数的常见方式

开发工具中设置比如IDEA,eclipse
运行jar包的时候:java  -XX:+UseG1GC xxx.jar
web容器比如tomcat,可以在脚本中的进行设置
通过jinfo实时调整某个java进程的参数(参数只有被标记为manageable的flags可以被实时修改)

1.6.1设置参数

1.设置堆内存大小和参数打印
-Xmx100M -Xms100M -XX:+PrintFlagsFinal
2.查询+PrintFlagsFinal的值
:=true
3.查询堆内存大小MaxHeapSize
:= 104857600
4.换算
104857600(Byte)/1024=102400(KB)
102400(KB)/1024=100(MB)
5.结论
104857600是字节单位

单位换算:

1Byte(字节)=8bit(位)
1KB=1024Byte(字节)
1MB=1024KB
1GB=1024MB
1TB=1024GB

1.7 常用参数含义

参数含义说明
-XX:CICompilerCount=3最大并行编译数如果设置大于1,虽然编译速度会提高,但是同样影响系统稳定性,会增加JVM崩溃的可能
-XX:InitialHeapSize=100M初始化堆大小简写-Xms100M
-XX:MaxHeapSize=100M最大堆大小简写-Xms100M
-XX:NewSize=20M设置年轻代的大小
-XX:MaxNewSize=50M年轻代最大大小
-XX:OldSize=50M设置老年代大小
-XX:MetaspaceSize=50M设置方法区大小
-XX:MaxMetaspaceSize=50M方法区最大大小
-XX:+UseParallelGC使用UseParallelGC新生代,吞吐量优先
-XX:+UseParallelOldGC使用UseParallelOldGC老年代,吞吐量优先
-XX:+UseConcMarkSweepGC使用CMS老年代,停顿时间优先
-XX:+UseG1GC使用G1GC新生代,老年代,停顿时间优先
-XX:NewRatio新老生代的比值比如-XX:Ratio=4,则表示新生代:老年代=1:4,也就是新生代占整个堆内存的1/5
-XX:SurvivorRatio两个S区和Eden区的比值比如-XX:SurvivorRatio=8,也就是(S0+S1):Eden=2:8,也就是一个S占整个新生代的1/10
-XX:+HeapDumpOnOutOfMemoryError启动堆内存溢出打印当JVM堆内存发生溢出时,也就是OOM,自动生成dump文件
-XX:HeapDumpPath=heap.hprof指定堆内存溢出打印目录表示在当前目录生成一个heap.hprof文件
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -Xloggc:g1-gc.log打印出GC日志可以使用不同的垃圾收集器,对比查看GC情况
-Xss128k设置每个线程的堆栈大小经验值是3000-5000最佳
-XX:MaxTenuringThreshold=6提升年老代的最大临界值默认值为 15
-XX:InitiatingHeapOccupancyPercent启动并发GC周期时堆内存使用占比G1之类的垃圾收集器用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比. 值为 0 则表示”一直执行GC循环”. 默认值为 45.
-XX:G1HeapWastePercentG1最大停顿时间暂停时间不能太小,太小的话就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。
-XX:ConcGCThreads=n并发垃圾收集器使用的线程数量默认值随JVM运行的平台不同而不同
-XX:G1MixedGCLiveThresholdPercent=65混合垃圾回收周期中要包括的旧区域设置占用率阈值默认占用率为 65%
-XX:G1MixedGCCountTarget=8设置标记周期完成后,对存活数据上限为 G1MixedGCLIveThresholdPercent 的旧区域执行混合垃圾回收的目标次数默认8次混合垃圾回收,混合回收的目标是要控制在此目标次数以内
-XX:G1OldCSetRegionThresholdPercent=1描述Mixed GC时,Old Region被加入到CSet中默认情况下,G1只把10%的Old Region加入到CSet中

2.各种垃圾收集器 

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

2.1Serial

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择。

它是一种单线程收集器,不仅仅意味着它只会使用一个CPU或者一条收集线程去完成垃圾收集工作,更重要的是其在进行垃圾收集的时候需要暂停其他线程。

优点:简单高效,拥有很高的单线程收集效率
缺点:收集过程需要暂停所有线程
算法:复制算法
适用范围:新生代
应用:Client模式下的默认新生代收集器

2.2Serial Old

Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,不同的是采用"标记-整理算法",运行过程和Serial收集器一样。

2.3ParNew

可以把这个收集器理解为Serial收集器的多线程版本,还是会暂停业务线程,只是将GC的单线程回收变成了多线程回收,如果服务器只有单核这个反而变慢

2.4Parallel Scavenge

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器,看上去和ParNew一样,但是Parallel Scanvenge更关注系统的吞吐量。

2.4.1吞吐量

吞吐量=运行用户代码的时间/(运行用户代码的时间+垃圾收集时间)

比如虚拟机总共运行了100分钟,垃圾收集时间用了1分钟,吞吐量=(100-1)/100=99%。

若吞吐量越大,意味着垃圾收集的时间越短,则用户代码可以充分利用CPU资源,尽快完成程序的运算任务。

-XX:MaxGCPauseMillis控制最大的垃圾收集停顿时间,保证GC尽可能在这个时间内回收,如果超过了这个时间,就会牺牲吞吐量和Eden区的大小,保证这个时间内回收完成,会导致频繁的GC
-XX:GCRatio直接设置吞吐量的大小。

2.5Parallel Old

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和标记-整理算法进行垃圾回收,也是更加关注系统的吞吐量。

2.6CMS

官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html#concurrent_mark_sweep_cms_collector
CMS(Concurrent Mark Sweep)收集器是一种以获取 最短回收停顿时间为目标的收集器。
采用的是"标记-清除算法",整个过程分为4步

2.6.1CMS的回收步骤

可以一定程度上的缓解Stop The World

(1)初始标记 CMS initial mark     标记GC Roots直接关联对象,不用,速度并发执行,速度很快,会STW
(2)并发标记 CMS concurrent mark  进行GC 找出所有的引用链上的剩余对象,比较耗时     并发执行
(3)重新标记 CMS remark ,修改并发标记因用户程序变动的内容,就是将第二步所产生的垃圾进行二次标记,由于第一步已经标记了,所以这不并不耗时,会STW
(4)并发清除 CMS concurrent sweep 清除不可达对象回收空间,同时有新垃圾产生,留着下次清理称为浮动垃圾,并发执行
由于整个过程中,并发标记和并发清除,收集器线程可以与用户线程一起工作,所以总体上来说,CMS收集器的内存回收过程是与用户线程一起并发地执行的。

优点:并发收集、低停顿
缺点:产生大量空间碎片、并发阶段会降低吞吐量

2.7G1(Garbage-First)

官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc.html#garbage_first_garbage_collection
使用G1收集器时,Java堆的内存布局与就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。
每个Region大小都是一样的,可以是1M到32M之间的数值,但是必须保证是2的n次幂
如果对象太大,一个Region放不下[超过Region大小的50%],那么就会直接放到H中
设置Region大小:-XX:G1HeapRegionSize=<N>M

所谓Garbage-Frist,其实就是优先回收垃圾最多的Region区域
1)分代收集(仍然保留了分代的概念)
2)空间整合(整体上属于“标记-整理”算法,不会导致空间碎片)
3)可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒)

2.7.1工作过程可以分为如下几步

初始标记(Initial Marking)    

标记以下GC Roots能够关联的对象,并且修改TAMS的值,需要暂停用户线程
并发标记(Concurrent Marking)  

从GC Roots进行可达性分析,找出存活的对象,与用户线程并发执行
最终标记(Final Marking)        

修正在并发标记阶段因为用户程序的并发执行导致变动的数据,需暂停用户线程
筛选回收(Live Data Counting and Evacuation)

对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划

2.8ZGC

官网:

https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
JDK11新引入的ZGC收集器,不管是物理上还是逻辑上,ZGC中已经不存在新老年代的概念了
会分为一个个page,当进行GC操作时会对page进行压缩,因此没有碎片问题
只能在64位的linux上使用,目前用得还比较少

2.8.1优点

(1)可以达到10ms以内的停顿时间要求

(2)支持TB级别的内存

(3)堆内存变大后停顿时间还是在10ms以内

3.垃圾收集器分类

3.1串行收集器

Serial和Serial Old

只能有一个垃圾回收线程执行,用户线程暂停。

适用于内存比较小的嵌入式设备。

3.2并行收集器[吞吐量优先]

Parallel Scanvenge、Parallel Old

多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。

适用于科学计算、后台处理等若交互场景。

3.3并发收集器[停顿时间优先]

CMS、G1

用户线程和垃圾收集线程同时执行(但并不一定是并行的,可能是交替执行的),垃圾收集线程在执行的时候不会停顿用户线程的运行。

适用于相对时间有要求的场景,比如Web。

4.常见问题

4.1吞吐量和停顿时间之间如何平衡

这两个指标也是评价垃圾回收器好处的标准。

 停顿时间

垃圾收集器 进行 垃圾回收终端应用执行响应的时间

停顿时间越短就越适合需要和用户交互的程序,良好的响应速度能提升用户体验;
吞吐量

运行用户代码时间/(运行用户代码时间+垃圾收集时间)
高吞吐量则可以高效地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

4.2如何选择合适的垃圾收集器

官网

  https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/collectors.html#sthref28

优先调整堆的大小让服务器自己来选择
如果内存小于100M,使用串行收集器
如果是单核,并且没有停顿时间要求,使用串行或JVM自己选
如果允许停顿时间超过1秒,选择并行或JVM自己选
如果响应时间最重要,并且不能超过1秒,使用并发收集器
对于G1收集

JDK 7开始使用,JDK 8非常成熟,JDK 9默认的垃圾收集器,适用于新老生代。

4.3是否使用G1收集器?

(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长

4.3.1G1中的RSet

全称Remembered Set,记录维护Region中对象的引用关系
试想,在G1垃圾收集器进行新生代的垃圾收集时,也就是Minor GC,假如该对象被老年代的Region中所引用,这时候新生代的该对象就不能被回收,怎么记录呢?
不妨这样,用一个类似于hash的结构,key记录region的地址,value表示引用该对象的集合,这样就能知道该对象被哪些老年代的对象所引用,从而不能回收。

4.4如何开启需要的垃圾收集器

(1)串行
    -XX:+UseSerialGC 
    -XX:+UseSerialOldGC
(2)并行(吞吐量优先):
    -XX:+UseParallelGC
    -XX:+UseParallelOldGC
(3)并发收集器(响应时间优先)
    -XX:+UseConcMarkSweepGC
    -XX:+UseG1GC

 5.思维导图

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/175657.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一个测试驱动的Spring Boot应用程序开发

文章目录 系统任务用户故事搭建开发环境Web应用的框架Spring Boot 自动配置三层架构领域建模域定义与领域驱动设计领域类 业务逻辑功能随机的Challenge验证 表示层RESTSpring Boot和REST API设计API第一个控制器序列化的工作方式使用Spring Boot测试控制器 小结 这里采用面向需…

悄悄上线:CSS @starting-style 新规则

最近 Chrome 117&#xff0c;CSS 又悄悄推出了一个新的的规则&#xff0c;叫做starting-style。从名称上来看&#xff0c;表示定义初始样式。那么&#xff0c;具体是做什么的&#xff1f;有什么用&#xff1f;一起了解一下吧 一、快速了解 starting-style 通常做一个动画效果…

vue3引入vuex基础

一&#xff1a;前言 使用 vuex 可以方便我们对数据的统一化管理&#xff0c;便于各组件间数据的传递&#xff0c;定义一个全局对象&#xff0c;在多组件之间进行维护更新。因此&#xff0c;vuex 是在项目开发中很重要的一个部分。接下来让我们一起来看看如何使用 vuex 吧&#…

OpenLayers入门,OpenLayers6的WebGLPointsLayer图层样式和运算符详解,四种symbolType类型案例

专栏目录: OpenLayers入门教程汇总目录 前言 本章讲解使用OpenLayers6的WebGL图层显示大量点情况下,列举出所有WebGLPointsLayer图层所支持的所有样式运算符大全。 补充说明 本篇主要介绍OpenLayers6.x版本的webgl图层,OpenLayers7.x和OpenLayers8.x主要更新内容就是webgl…

任意文件下载漏洞(CVE-2021-44983)

简介 CVE-2021-44983是Taocms内容管理系统中的一个安全漏洞&#xff0c;可以追溯到版本3.0.1。该漏洞主要源于在登录后台后&#xff0c;文件管理栏存在任意文件下载漏洞。简言之&#xff0c;这个漏洞可能让攻击者通过特定的请求下载系统中的任意文件&#xff0c;包括但不限于敏…

单链表相关面试题--5.合并有序链表

5.合并有序链表 21. 合并两个有序链表 - 力扣&#xff08;LeetCode&#xff09; /* 解题思路&#xff1a; 此题可以先创建一个空链表&#xff0c;然后依次从两个有序链表中选取最小的进行尾插操作进行合并。 */ typedef struct ListNode Node; struct ListNode* mergeTwoList…

C++ Boost 实现异步端口扫描器

端口扫描是一种用于识别目标系统上哪些网络端口处于开放、关闭或监听状态的网络活动。在计算机网络中&#xff0c;端口是一个虚拟的通信端点&#xff0c;用于在计算机之间传输数据。每个端口都关联着特定类型的网络服务或应用程序。端口扫描通常是网络管理员、安全专业人员用来…

PyTorch微调终极指南1:预训练模型调整

如今&#xff0c;在训练深度学习模型时&#xff0c;通过根据自己的数据微调预训练模型来进行迁移学习&#xff08;transfer learning&#xff09;已成为首选方法。 通过微调这些模型&#xff0c;我们可以利用他们的专业知识并使它们适应我们的特定任务&#xff0c;从而节省宝贵…

uniapp - 开关按钮

目录 1.运行代码如下&#xff1a; 2.运行效果 3.switch属性 1.运行代码如下&#xff1a; <template><view class"switchBox"><switch change"switchChange" color"#F21177" :checked"form.checked" /></view&…

Python简直是万能的,这5大主要用途你一定要知道!

从2015开始国内就开始慢慢接触Python了&#xff0c;从16年开始Python就已经在国内的热度更高了&#xff0c;目前也可以算的上"全民Python"了。 众所周知小学生的教材里面已经有Python了&#xff0c;国家二级计算机证也需要学习Python了&#xff01; 因为Python简单…

消息中间件——RabbitMQ(四)命令行与管控台的基本操作!

前言 在前面的文章中我们介绍过RabbitMQ的搭建&#xff1a;RabbitMQ的安装过以及各大主流消息中间件的对比&#xff1a;&#xff0c;本章就主要来介绍下我们之前安装的管控台是如何使用以及如何通过命令行进行操作。 1. 命令行操作 1.1 基础服务的命令操作 rabbitmqctl sto…

2023年中国高压驱动芯片分类、市场规模及发展趋势分析[图]

高压驱动芯片是一种能在高压环境下工作的集成电路&#xff0c;主要用于控制和驱动各种功率器件&#xff0c;如继电器、电磁阀、电机、变频器等。高压驱动芯片根据其输出电流的大小和形式可分为两类恒流型和开关型。 高压驱动芯片分类 资料来源&#xff1a;共研产业咨询&#x…

Windows系统如何安装与使用TortoiseSVN客户端,并实现在公网访问本地SVN服务器

文章目录 前言1. TortoiseSVN 客户端下载安装2. 创建检出文件夹3. 创建与提交文件4. 公网访问测试 前言 TortoiseSVN是一个开源的版本控制系统&#xff0c;它与Apache Subversion&#xff08;SVN&#xff09;集成在一起&#xff0c;提供了一个用户友好的界面&#xff0c;方便用…

深入了解ECharts

文章目录 导言一、什么是ECharts&#xff1f;二、基本概念1.ECharts实例2.数据系列&#xff08;Series&#xff09;3.坐标轴&#xff08;Axis&#xff09; 三、基本图表类型1.折线图2.柱状图3.饼图 高级功能1.题定制2.事件交互3.地图可视化 总结我是将军&#xff0c;我一直都在…

埃尔米特插值(hermite 插值) C++

埃尔米特插值 原理 #pragma once #include <vector> #include <functional> /*埃尔米特插值*/ struct InterpolationPoint {double x; // 插值点的横坐标double y; // 插值点的纵坐标double derivative; // 插值点的导数值// 默认构造函数InterpolationPoint() : x…

SpringBoot项目启动后自动停止了?

1 现象 2023-11-22T09:05:13.36108:00 DEBUG 17521 --- [ main] o.s.b.a.ApplicationAvailabilityBean : Application availability state LivenessState changed to CORRECT 2023-11-22T09:05:13.36208:00 DEBUG 17521 --- [ main] o.s.b.a.Applicat…

D-Wave推出新开源及解决无线信道解码新方案!

​&#xff08;图片来源&#xff1a;网络&#xff09; 加拿大量子计算机公司D-Wave&#xff08;纽约证券交易所股票代码&#xff1a;QBTS&#xff09;是量子计算系统、软件和服务领域的佼佼者&#xff0c;也是全球首家商业量子计算机供应商。 近期&#xff0c;该公司发布了一…

数据库实验一 数据表的创建与修改管理

数据库实验一、数据表的创建与修改管理实验 一、实验目的二、设计性实验三、观察与思考 一、实验目的 (1) 掌握表的基础知识。 (2) 掌握使用SQL语句创建表的方法。 (3) 掌握表的修改、查看、删除等基本操作方法。 (4) 掌握表中完整性约束的定义。 (5) 掌握完整性约束的作用 二…

腾讯云轻量数据库开箱测评,1核1G轻量数据库测试

腾讯云轻量数据库1核1G开箱测评&#xff0c;轻量数据库服务采用腾讯云自研的新一代云原生数据库TDSQL-C&#xff0c;轻量数据库兼100%兼容MySQL数据库&#xff0c;实现超百万级 QPS 的高吞吐&#xff0c;128TB海量分布式智能存储&#xff0c;虽然轻量数据库为单节点架构&#x…

外贸自建站的指南?新手如何玩转海洋建站?

外贸自建站工具有哪些&#xff1f;外贸新手怎么搭建独立网站&#xff1f; 拥有自己的外贸网站是提高企业国际竞争力和扩大市场份额的有效途径。然而&#xff0c;许多企业在外贸自建站的过程中感到困惑。海洋建站将为您提供一份详细的外贸自建站指南&#xff0c;助您轻松打造一…