Android设计模式--桥接模式

闻正言,行正道,左右前后皆正人

一,定义

将抽象部分与实现部分分离,使它们都可以独立地进行变化

二,使用场景

从模式的定义中,我们大致可以了解到,这里的桥接的作用其实就是连接抽象部分与实现部分,但事实上,任何多维度变化类或者说多个树状类之间的耦合都可以使用桥接模式来实现解耦。

如果一个系统需要在构件的抽象化角色和具体化角色之间增加更多的灵活性,避免 在两个层次之间建立静态的继承联系,可以通过桥接模式使它们在抽象层建立一个关联关系。

对于那些不希望使用继承或因为多层次继承导致系统类的个数急剧增加的系统,也可以考虑使用桥接模式。

一个类存在两个独立变化的维度,且这两个维度都需要进行扩展。

三,角色介绍

1,Abstraction 抽象部分

该类保持一个对实现部分对象的引用,抽象部分中的方法需要调用实现部分的对象来实现,该类一般为抽象类。

2,RefinedAbstraction 优化的抽象部分

抽象部分的具体实现,该类一般是对抽象部分的方法进行完善和扩展。

3,Implementor 实现部分

可以为接口或抽象类,其方法不一定要与抽象部分中的一致,一般情况下是由实现部分提供基本的操作,而抽象部分定义的则是基于实现部分这些基本操作的业务方法。

4,ConcreteImplementor 实现部分的具体实现

完善 实现部分中方法定义的具体逻辑

5,Client 客户端调用

四,使用案例

假如我们的笔记本工厂有联想i5,联想i7,联想i9,华硕i5,华硕i7,华硕i9这些类型的电脑生产。那么对于笔记本电脑来说,实质上就两种变化,联想和华硕、i5,i7,i9

那么我们就将品牌定义为抽象部分,cpu型号定义为实现部分。因为它们是两个维度的变化,当然也可以反过来定义。

首先定义实现部分,生产不同的CPU

public interface CPU {

    void makeCPU();
}

然后具体实现不同的CPU型号:

public class I5cPU implements CPU{
    @Override
    public void makeCPU() {
        System.out.println("生产i5Cpu");
    }
}
public class I7Cpu implements CPU{
    @Override
    public void makeCPU() {
        System.out.println("生产i7Cpu");
    }
}
public class I9Cpu implements CPU{
    @Override
    public void makeCPU() {
        System.out.println("生产i9Cpu");
    }
}

 然后定义抽象部分,持有实现部分CPU的引用 ,生产不同品牌的电脑:

/**
 * 抽象部分  笔记本电脑
 * */
public abstract class NoteBook {
    protected CPU cpu;

    public NoteBook(CPU cpu) {
        this.cpu = cpu;
    }

    /**
     *
     * */
    public abstract void makeComputer();

}

然后是RefinedAbstraction 优化的抽象部分,实现不同品牌的电脑:

public class LenovoNoteBook extends NoteBook{

    public LenovoNoteBook(CPU cpu) {
        super(cpu);
    }

    @Override
    public void makeComputer() {

        System.out.println("生产联想电脑");
        cpu.makeCPU();
    }
}
public class AsusNoteBook extends NoteBook{

    public AsusNoteBook(CPU cpu) {
        super(cpu);
    }

    @Override
    public void makeComputer() {
        System.out.println("生产华硕笔记本电脑");
        cpu.makeCPU();
    }
}

最后是在client使用:

I5cPU i5cPU =new I5cPU();
I7Cpu i7Cpu =new I7Cpu();
I9Cpu i9Cpu =new I9Cpu();
//联想i5
LenovoNoteBook lenovoNoteBook1 =new LenovoNoteBook(i5cPU);
lenovoNoteBook1.makeComputer();
//联想i7
LenovoNoteBook lenovoNoteBook2 =new LenovoNoteBook(i7Cpu);
lenovoNoteBook2.makeComputer();
//联想i9
LenovoNoteBook lenovoNoteBook3 =new LenovoNoteBook(i9Cpu);
lenovoNoteBook3.makeComputer();
//华硕i5
AsusNoteBook asusNoteBook1 =new AsusNoteBook(i5cPU);
asusNoteBook1.makeComputer();
//华硕i7
AsusNoteBook asusNoteBook2 =new AsusNoteBook(i7Cpu);
asusNoteBook2.makeComputer();
//华硕i9
AsusNoteBook asusNoteBook3 =new AsusNoteBook(i9Cpu);
asusNoteBook3.makeComputer();

输出结果:

 

如果 我们想再增加 一个惠普品牌的笔记本电脑,那么只需要新建一个类 实现抽象部分即可:

 

public class HPNoteBook extends NoteBook{

    public HPNoteBook(CPU cpu) {
        super(cpu);
    }

    @Override
    public void makeComputer() {
        System.out.println("生产惠普笔记本电脑");
    }
}

在客户端使用:

 

//惠普i5
HPNoteBook hpNoteBook1 =new HPNoteBook(i5cPU);
hpNoteBook1.makeComputer();
//惠普i7
HPNoteBook hpNoteBook2 =new HPNoteBook(i7Cpu);
hpNoteBook2.makeComputer();
//惠普i9
HPNoteBook hpNoteBook3 =new HPNoteBook(i9Cpu);
hpNoteBook3.makeComputer();

同样的如果 我们要增加实现部分CPU型号,比如要增加i3,也是直接新建 类就可以。

五,总结

桥接模式可以应用到许多开发中,但是它应用的却不多,一个很重要的原因是对于抽象与实现的分离把握,是不是需要分离,如何分离?对设计者来说要有一个恰倒好处的分寸。不管怎么说,桥接模式的优点我们毋庸置疑,分离抽线与实现,灵活的扩展以及对客户来说透明的实现等。但是使用桥接模式也有一个不明显的缺点,上面我们也提到了,就是不容易设计,对开发者来说要有一定的经验要求,因此,对桥接模式应用来说,理解很简单,设计却不容易。

参考文献:Android源码设计模式解析与实战

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/190379.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DDD落地:从阿里单据系统,看DDD在大厂如何落地?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中,最近有小伙伴拿到了一线互联网企业如阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题: 谈谈你的DDD落地经验? 谈谈你对DDD的理解&#x…

【libGDX】Mesh立方体贴图(6张图)

1 前言 本文通过一个立方体贴图的例子,讲解三维纹理贴图的应用,案例中使用 6 张不同的图片给立方体贴图,图片如下。 读者如果对 libGDX 不太熟悉,请回顾以下内容。 使用Mesh绘制三角形使用Mesh绘制矩形使用Mesh绘制圆形使用Mesh绘…

原生DOM事件、react16、17和Vue合成事件

目录 原生DOM事件 注册/绑定事件 按DOM事件级别分类,越小越高 DOM0:onclick传统注册: 唯一(同元素的(不)同事件会覆盖) 没有捕获和冒泡的,只有简单的事件绑定 DOM2:addEventListener监听…

Mybatis反射核心类Reflector

Reflector类负责对一个类进行反射解析&#xff0c;并将解析后的结果在属性中存储起来。 一个类反射解析后都有哪些属性呢&#xff1f;我们可以通过Reflector类定义的属性来查看 public class Reflector {// 要被反射解析的类private final Class<?> type;// 可读属性列…

【聚类 | K-means】原理及推导流程(附模板代码,库手撕实现)

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…

shell脚本 ( 函数 数组 冒泡排序)

目录 什么是函数 使用函数的方法 格式 注意事项 函数的使用 函数可以直接使用 函数变量的作用范围 函数返回值 查看函数 删除函数 函数的传递参数 使用函数文件 ​编辑 拓展递归函数 例&#xff1a;求5的阶乘 什么是数组 使用数组的方法 1.先声明 2.定义数组 3…

MQTT客户端MQTT.fx 1.7.1下载、安装和界面介绍

MQTT.fx是一款基于Eclipse Paho&#xff0c;使用Java语言编写的MQTT客户端工具。支持通过Topic订阅和发布消息&#xff0c;用来前期和物理云平台调试非常方便。 1.下载 1.1.访问官方下载地址下载&#xff0c;但是下载不到1.7.1版本 1.2.在连接网页末尾点击立即下载&#xff0c;…

思维模型 古烈治效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。见异思迁。 1 古烈治效应的应用 1.1 古烈治效应之心理学研究 在一项研究中&#xff0c;研究者让男性和女性参与者分别观看一系列异性的照片&#xff0c;并评估他们的吸引力。在观看完所有…

(三) Windows 下 Sublime Text 3 配置Python环境和Anaconda代码提示

一&#xff1a;新建一个 Python3.7 编译环境。 1 Tools--Build System--New Build System... 修改前&#xff1a; 修改后&#xff1a; 内容&#xff1a; {"cmd":["C:\\Python\\Python37-32\\python.exe","-u","$file"],"file_r…

Java基于springboot+vue开发服装商城小程序

演示视频&#xff1a; 小程序 https://www.bilibili.com/video/BV1rM411o7m4/?share_sourcecopy_web&vd_source11344bb73ef9b33550b8202d07ae139b 管理员 https://www.bilibili.com/video/BV1fc411D7V3/?share_sourcecopy_web&vd_source11344bb73ef9b33550b8202d07ae…

CV计算机视觉每日开源代码Paper with code速览-2023.11.21

点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构&#xff1a;Transformer】Multi-entity Video Transformers for Fine-Grained Video Representation Learning 论文地址&…

WordPress最廉价优化整站的加载速度

为什么说一个站不优化就等于一个人做整个团队的事务导致项目进展慢&#xff0c;网站也是如此 图片、静态文件、php分离加速&#xff0c;加载速度并不是很快但是很协调比单个网站加载速度快许多 一、图片单域名加载设置上传文件路径和域名 以下代码添加在主题目录&#xff1a;fu…

大数据基础 HDFS客户端操作

一、Maven概述 Maven是一个专门用于管理和构建Java项目的工具。我们之所以要使用Maven&#xff0c;是因为Maven可以为我们提供一套标准化的项目结构、一套标准化的构建流程和一套方便的依赖管理机制&#xff0c;这些功能可以使得我们的项目结构更加清晰&#xff0c;导入jar包的…

Effective Modern C++(1.顶层const与底层const)

1.顶层const与底层const的定义 const修饰的变量不可以改变&#xff0c;那么他就是顶层const&#xff0c;如&#xff1a; const int a 10; 那么&#xff0c;对于 const int *const p new int(10); 第二个const就是顶层const&#xff0c;因为他修饰的是p&#xff1b;第一个…

容器技术——Cgroup

目录 容器技术容器技术概述要区分好共享与隔离的概念容器技术的三大核心容器对比虚拟机 namespaceUnionFs容器操作系统的来源操作系统的来源完整操作系统的镜像docker image是什么&#xff1f;如何构成的 如何为容器安装操作系统UnionFS&#xff08;联合文件系统&#xff09;的…

23.11.26日总结

图片与文字顶部对齐&#xff1a; <div class"addDishImgBox"><span class"addDishImgZi">商品图片&#xff1a;</span><img :src"myStorePhoto" class"addDishImg"> </div> .addDishImgBox{display: f…

【智能算法】基于黄金正弦和混沌映射思想的改进减法优化器算法

减法优化器&#xff08;Subtraction-Average-Based Optimizer&#xff0c;SABO&#xff09;是2023年刚出的智能优化算法。目前知网中文期刊基本搜不到&#xff0c;并且可以遇见未来一年文章也很少。SABO算法原理简单&#xff0c;算上初始化粒子&#xff0c;总共不超过6个公式。…

女生儿童房装修:原木上下铺搭配粉色调。福州中宅装饰,福州装修

你是否正在为女生儿童房的装修而发愁呢&#xff1f;该如何让房间既适合孩子生活&#xff0c;又能够满足日常学习的需要呢&#xff1f;这里有一个精美的装修案例&#xff0c;或许能够为你提供一些灵感。 1️⃣ 原木上下铺 房间的上下铺采用了原木色调&#xff0c;带来了自然、温…

网络爬虫(Python:Requests、Beautiful Soup笔记)

网络爬虫&#xff08;Python&#xff1a;Requests&#xff09; 网络协议简要介绍一。OSI参考模型二、TCP/IP参考模型对应关系TCP/IP各层实现的协议应用层传输层网络层 HTTP协议HTTP请求HTTP响应HTTP状态码 Requests&#xff08;Python&#xff09;Requests模块支持的http方法GE…

探索深度学习:从理论到实践的全面指南

探索深度学习&#xff1a;从理论到实践的全面指南 摘要&#xff1a; 本文旨在提供一个关于深度学习的全面指南&#xff0c;带领读者从理论基础到实践应用全方位了解这一技术。我们将介绍深度学习的历史、基本原理、常用算法和应用场景&#xff0c;并通过Python代码示例和Tens…