2017年五一杯数学建模B题自媒体时代的消息传播问题解题全过程文档及程序

2017年五一杯数学建模

B题 自媒体时代的消息传播问题

原题再现

  电视剧《人民的名义》中人物侯亮平说:“现在是自媒体时代,任何突发性事件几分钟就传播到全世界。”相对于传统媒体,以互联网技术为基础的自媒体以其信息传播的即时性、交往方式的平等性和交往身份的虚拟性等特点,已经成为公民获取信息、表达情感与思想、参与社会公共生活的重要载体,并逐渐渗透到政治、经济、文化、社会等诸多领域。
  结合实际情况,建立数学模型,解决以下问题:
  问题 1:建立一条消息在自媒体平台上传播的数学模型,并以“中共中央、国务院决定设立河北雄安新区”这条消息为例,分析其传播过程。
  问题 2:某条消息在自媒体传播的过程中,如果出现了新的与之高度关联的消息(例如相关单位或知名人士发布了新的消息),建立数学模型,分析并说明新消息出现后传播过程的变化情况。
  问题 3:请建立数学模型分析(1)不同类型的消息在自媒体传播过程中是否存在差异?(2) 同一消息在不同自媒体平台上传播是否存在差异?并通过数值算例进行验证。
  问题 4:结合所建立的模型,写一份分析报告,阐述你对自媒体时代消息传播的见解或看法,并进一步提出自媒体平台管理的建议。

整体求解过程概述(摘要)

  新媒体的诞生标志着信息的传递进入了一个全新的时代,各类信息间的相互渗透,媒体平台间的交叉传递,拉近人与人间的距离,无时无刻地影响着人们生活方式。
  本文就信息的传递方式及过程展开研究,主要解决了信息如何在实际生活中传递的问题,并针对与之高度关联信息出现时的对其传播带来的影响,给出了其最优化影响的处理方案,同时考虑信息自身的类型及媒体平台的差异,结合数据分别分析了其各自影响,最后依据所得结论,提出了一份关于新媒体消息传播及管理的报告。
  针对问题一,我们基于传统传染病传播模型,就 SNS 网络建立一种新型 SEIR模型,将消息传播过程中不同职能的媒体平台化作不同节点,分别分析其在实际传播过程中的变化过程,多角度地揭示了实际消息传播的过程。
  针对问题二,依据高度相似消息的出现,我们沿用问题一传染病传播的思想,建立基于节点属性和信息内容等多个因素,对信息传播概率和传播延迟两个目标变量建立细粒度的模型,具体分析了新消息对原消息传播带来的影响并求解出最大化影响的条件。
  针对问题三,我们建立元胞自动机模型仿真不同信息类型对传播带来的影响,并给出两者间的关系,结果表明受用户欢迎度高的消息具备更广泛的辐射范围及更快的传播速率。对于不同类型的媒体平台,我们建立一种新型 LWCS 模型考量平台类型与消息传播的关系,经数据分析得出平台的类型仅与传播过程中速率相关,同时我们还证明了该指标相对于其他指标的正确性及优越性。
  针对问题四,我们梳理前三问中所得结论,就自媒体平台管理的现状,给出切实可行的改进建议。

模型假设:

  1.假设在某条消息传播过程不受自然因素影响;
  2.假设消息传播过程不受政策的影响;
  3.假设各个自媒体平台之间相互独立;
  4.假设不同类型信息间不存在竞争;
  5.假设网络中每个节点本身具有一定的权重。

问题分析:

  问题一的分析
  新媒体时代的信息传播的不是简单的图论网络,还要实际情况,显然鉴于信息的特殊性质,可以将信息类比于流行性传染疾病的传播。但这还是远远不够的,所以在此基础上我们建立一种新型的 SEIR 模型,更加细分传播过程中媒体平台的职能,最后利用 MATLAB 对设立的偏微分方程进行求解。
  问题二的分析
  为探究新高度关联消息对原信息的影响,我们必须先分析新信息的特征,为此,沿用问题一的思想我们建立了基于节点和信息传播特征的网络信息的传播模型,鉴于问题二的情况提取出两个主影响因子,得出节点间传播速率与新信息的关系,并利用问题一中的模型得出了节点间传播速率与整体信息传播点密度的关系,进行分析比较可得出影响其重要因素。
  问题三的分析
  针对不同类型的数据,必然有着不同的节点传播速率,在此基础上我们利用元胞自动机进行仿真,改变每次仿真时的节点传播速率,并对数据数据分析。对于不同类型的媒体平台,我们没有选用传统的单一指标,而是建立了一符合LWCS 模型作为评价标准,我们利用问题一中的模型对其进行检验的一方面验证了其正确性,另一方面证明其较与其他指标的优越性,并利用所得的结果进行分析。
  问题四的分析
  对于问题四,可根据前三个问题所建立的模型及其结论,针对其存在的问题对自媒体平台管理提出切实可行的建议。

模型的建立与求解整体论文缩略图

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

function y=prsir(t,x,theta,eta,alpha,k)
theta=0.5;lambda=0.5;h=2;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
k=14;
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts=0:0.5:10;
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts,x0);[t,x]
plot(t,x(:,1),'rs-',t,x(:,2),'b*-',t,x(:,3),'go-'),grid,
xlabel('t');ylabel('PR-SIR模型中三类节点密度
');legend('I(t)','S(t)','R(t)');
title('\theta=0.5,\lambda=0.5,h=2,d=0.5,w=0.5,\rho=2,\epsilon=1')
分析 d 变化对传播节点的影响:
% prsira.m
function y=prsira(t,x,theta,eta,alpha,k)
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.2;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'g*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.4;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'r*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.6;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'c*-'),grid,
hold on
ts=0:0.5:10;
theta=0.5;
lambda=0.5;
h=2;
d=0.8;
eta=theta*(1-(1-lambda).^(h*d));
k=14;
x0=[4999/5000,1/5000,0];
[t,x]=ode45(@(t,x) prsira(t,x,theta,eta,alpha,k),ts,x0);[t,x]
plot(t,x(:,2),'m*-'),grid,
grid on
xlabel('t');ylabel('传播节点密度
S(t)');legend('d=0.2','d=0.4','d=06','d=0.8');
title('\theta=0.5,\lambda=0.5,h=2,w=0.5,\rho=2,\epsilon=1')
function y=prsir(t,x,theta,eta,alpha,k)
w=0.5;rho=2;epsilon=1;
alpha=w./(1+exp(rho-epsilon*t));
k=14;
y=[-theta*k*x(1)*x(2),eta*k*x(1)*x(2)-alpha*k*x(2)*(x(2)+x(3)),al
pha*k*x(2)*(x(2)+x(3))+(theta-eta)*k*x(1)*x(2)]';
% Command Window
ts1=0:0.5:2;
theta=0.5;lambda=0.5;h=2;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts1,x0);[t,x]
plot(t,x(:,2),'b*-','linewidth',2),grid,
hold on
ts2=2:0.5:8;
theta=0.5;lambda=0.5;h=4;d=0.5;
eta=theta*(1-(1-lambda).^(h*d));
x0=[4999/5000,1/5000,0];
[t,x]=ode45('prsir',ts2,x0);[t,x]
plot(t,x(:,2),'r*-','linewidth',2),grid,
grid on
xlabel('t');ylabel('传播节点密度S(t)');legend('h=2','h=4');
title('\theta=0.5,\lambda=0.5,d=0.5,w=0.5,\rho=2,\epsilon=1')
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/191757.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#,数值计算——插值和外推,RBF_fn 与 RBF_gauss 的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { public interface RBF_fn { double rbf(double r); } } ---------------------------------------------- using System; namespace Legalsoft.Truffer { public class RBF_gauss : RBF…

如何通过nginx进行服务的负载均衡

简单介绍 随着互联网的发展,业务流量越来越大并且业务逻辑也越来越复杂,单台服务器的性能及单点故障问题就凸显出来了,因此需要多台服务器组成应用集群,进行性能的水平扩展以及避免单点故障的出现。应用集群是将同一应用部署到多台…

上海亚商投顾:北证50指数大涨 逾百只北交所个股涨超10%

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指11月24日震荡调整,深成指、创业板指盘中跌超1%。北证50指数大涨超6%,北交所个股持…

虚拟化逻辑架构: LBR 网桥基础管理

目录 一、理论 1.Linux Bridge 二、实验 1.LBR 网桥管理 三、问题 1.Linux虚拟交换机如何增删 一、理论 1.Linux Bridge Linux Bridge(网桥)是用纯软件实现的虚拟交换机,有着和物理交换机相同的功能,例如二层交换&#…

redis key

不管是:规则,还是其他规则,定义好就可以了。其实没有太多要求的。 1)冒号分割类似那种yaml在客户端显示树结构 2)其他分割类似那种properties在客户端显示列表结构

数组栈的实现

1.栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作 进行数据插入和删除操作的一端称为栈顶,另一端称为栈底 栈中的数据元素遵守后进先出LIFO,(Last In First Out)的原则 压栈&…

【赠书第8期】工程效能十日谈

文章目录 前言 1 工程效能十日谈 1.1 制定清晰的目标和计划 1.2 引入先进的技术和工具 1.3 建立有效的沟通机制 1.4 灵活应对变化 1.5 确保资源充足 1.6 进行有效的风险管理 1.7 进行持续的监控和评估 1.8 优化团队合作 1.9 注重质量管理 1.10 进行项目总结和反思 …

PyEcharts-Faker的介绍

1 PyEcharts-Faker from pyecharts.faker import Faker方法属性说明对应内容Faker.clothes[“衬衫”, “毛衣”, “领带”, “裤子”, “风衣”, “高跟鞋”, “袜子”]Faker.values()[106, 111, 145, 33, 20, 138, 141]Faker.drinks[“可乐”, “雪碧”, “橙汁”, “绿茶”,…

【管理运筹学】背诵手册(六)| 图与网络分析(基本概念、最小支撑树问题、最短路问题)

六、图与网络分析 基本概念、术语 某个边的两个端点相同,称为环;两点之间有多于一条的边,成为多重边。一个无环、无多重边的图称为简单图,无环但允许有多重边的图称为多重图。 次:以 v i v_i vi​ 为端点的边的数目…

Redis序列化操作

目录 1.protostuff 的 Maven 依赖 2.定义实体类 3.序列化工具类 ProtostuffSerializer 提供了序列化和反序列化方法 4.测试 利用 Jedis 提供的字节数组参数方法,如: public String set(String key, String value) public String set(byte[] key…

IDEA DeBug

文章目录 01_Debug简介和意义02_IDEA中的Debug步骤03_跳转到当前代码执行的行04_步过调试的使用05_步入调试的使用06_强制步入调试的使用07_步出调试的使用08_回退断点调试的使用09_运行到光标处10_计算表达式11_条件断点12_多线程调试 01_Debug简介和意义 什么是程序DeBug&am…

人力资源管理后台 === 主页模块

目录 1.获取用户资料在Vuex中共享 2.显示用户头像和用户名 3.处理头像为空的场景 4.处理token失效的问题 5.调整下拉菜单,实现退出登录 6.修改密码功能实现 6.1-修改密码-弹出层 6.2-修改密码-表单结构 6.3-修改密码-表单校验 6.4-修改密码-确定和取消 7.…

设计模式精讲:掌握单例模式的实现与优化

掌握单例模式的实现与优化 一、引言:如何学习设计模式?二、前置知识:对象的创建的销毁2.1、拷贝构造2.2、拷贝赋值构造2.3、移动构造2.4、移动赋值构造 三、单例模式的定义四、单例模式的实现与优化4.1、版本一4.2、版本二4.3、版本三4.4、版…

均匀球形分布的随机三维单位向量

生成具有均匀球形分布的随机三维单位向量[参考] import numpy as np import matplotlib.pyplot as plt def random_three_vector():"""Generates a random 3D unit vector (direction) with a uniform spherical distributionAlgo from http://stackoverflow.c…

论文阅读:C2VIR-SLAM: Centralized Collaborative Visual-Inertial-Range SLAM

前言 论文全程为C2VIR-SLAM: Centralized Collaborative Visual-Inertial-Range Simultaneous Localization and Mapping,是发表在MDPI drones(二区,IF4.8)上的一篇论文。这篇文章使用单目相机、惯性测量单元( IMU )和UWB设备作为…

Node——npm包管理器的使用

Node.js使用npm对包进行管理,其全称为Node Package Manager,开发人员可以使用它安装、更新或者卸载Node.js的模块 1、npm包管理器基础 1.1、npm概述 npm是Node.js的标准软件包管理器,其在2020年3月17日被GitHub收购,而且保证永…

1.9 字符数组

1.9 字符数组 一、字符数组概述二、练习 一、字符数组概述 所谓字符数组&#xff0c;就是char类型的数组&#xff0c;比如 char a[]&#xff0c;是C语言中最常用的数组类型&#xff0c;先看一个程序 #include <stdio.h> #define MAXLINE 1000 //最大行长度限制 int get…

软件介绍02- flameshot截图软件(linux系统可用)

1 软件介绍 在Windows和mac平台一直都使用着snipaste截图&#xff0c;非常好用&#xff0c;又能够钉图。遗憾是并没有开发linux版本&#xff0c;真不知道为什么。 好在终于找到一款截图软件&#xff0c;flameshot截图软件&#xff0c;可以平替snipaste。 下载网址&#xff1a;…

什么是好的FPGA编码风格?(3)--尽量不要使用锁存器Latch

前言 在FPGA设计中&#xff0c;几乎没人会主动使用锁存器Latch&#xff0c;但有时候不知不觉中你的设计莫名其妙地就生成了一堆Latch&#xff0c;而这些Latch可能会给你带来巨大的麻烦。 什么是锁存器Latch&#xff1f; Latch&#xff0c;锁存器&#xff0c;一种可以存储电路…

【Linux】进程间通信

进程间通信 1. 进程间通信介绍1.1 进程间通信目的1.2 进程间通信发展1.3 进程间通信分类1.4 进程间通信的本质理解 2. 管道3. 匿名管道3.1 pipe()函数3.2 站在文件描述符角度-深度理解管道3.3 站在内核角度-管道本质3.4 匿名管道使用步骤3.4 管道读写规则3.5 管道的读与写的五种…