C++-继承

一. 继承的概念及定义
        1 . 继承的概念
        继承(inheritance) 机制是面向对象程序设计 使代码可以复用 的最重要的手段,它允许程序员在 持原有类特性的基础上进行扩展 ,增加功能,这样产生新的类,称派生类。继承 呈现了面向对象 程序设计的层次结构 ,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用, 承是类设计层次的复用。
        
        
class Person
{
public:
 void Print()
 {
 cout << "name:" << _name << endl;
 cout << "age:" << _age << endl;
 }
protected:
 string _name = "peter"; // 姓名
 int _age = 18;  // 年龄
};

class Student : public Person
{
protected:
 int _stuid; // 学号
};

class Teacher : public Person
{
protected:
 int _jobid; // 工号
};
int main()
{
 Student s;
 Teacher t;
 s.Print();
 t.Print();
 return 0;
}
       

         2.继承的定义

                定义格式:
                        下面我们看到Person是父类,也称作基类。Student 是子类,也称作派生类。
        
                        
                
                继承关系和访问限定符:
                
                                

                                ​​​​​  

                继承基类成员访问方式的变化

                        

                总结:
                1. 基类private 成员在派生类中无论以什么方式继承都是不可见的。这里的 不可见是指基类的私 有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面
都不能去访问它
                2. 基类private 成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected 可以看出保护成员限定符是因继承才出现的
                3. 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min( 成员在基类的访问限定符,继承方式 ) public > protected
> private
                4. 使用关键字class 时默认的继承方式是 private ,使用 struct 时默认的继承方式是 public 不过 最好显示的写出继承方式
                5. 在实际运用中一般使用都是public 继承,几乎很少使用 protetced/private 继承 ,也不提倡使用protetced/private 继承,因为 protetced/private 继承下来的成员都只能在派生类的类里
面使用,实际中扩展维护性不强。
二.基类和派生类的赋值转换
        
        派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用 。这里有个形象的说法叫切片
或者切割。寓意把派生类中父类那部分切来赋值过去。
        基类对象不能赋值给派生类对象。
        基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类
的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用 RTTI(Run-Time Type Information)的 dynamic_cast 来进行识别后进行安全转换。

                        ​​​​​​​        ​​​​​​​         

                       

三. 继承中作用域

        1. 在继承体系中 基类 派生类 都有 独立的作用域
        2. 子类和父类中有同名成员, 子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏, 也叫重定义。 (在子类成员函数中,可以 使用 基类 :: 基类成员 显示访问
        3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
        4. 注意在实际中在 继承体系里 面最好 不要定义同名的成员
        
        ​​​​​​​
// Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected :
 string _name = "小李子"; // 姓名
 int _num = 111;   // 身份证号
};
class Student : public Person
{
public:
 void Print()
 {
 cout<<" 姓名:"<<_name<< endl;
 cout<<" 身份证号:"<<Person::_num<< endl;
 cout<<" 学号:"<<_num<<endl;
 cout<<" 学号:"<<Person::_num<<endl;
 }
protected:
 int _num = 999; // 学号
};
void Test()
{
 Student s1;
 s1.Print();
};

// B中的fun和A中的fun不是构成重载,因为不是在同一作用域
// B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。
class A
{
public:
	void fun()
	{
		cout << "func()" << endl;
	}
};
class B : public A
{
public:
	void fun(int i)
	{
		A::fun();
		cout << "func(int i)->" << i << endl;
	}
};

int main(void)
{
	B b;
	b.fun(10);
	return 0;
}

                         

 

四.派生类的默认成员函数(在公有继承的前提下)

        6个默认成员函数,默认的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

                1. 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
                2. 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
                3. 派生类的operator= 必须要调用基类的 operator= 完成基类的复制。
                4. 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
                5. 派生类对象初始化先调用基类构造再调派生类构造。
                6. 派生类对象析构清理先调用派生类析构再调基类的析构。
                7. 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同                   ( C++-多态-CSDN博客 )。那么编译器会对析构函数名进行特殊处理,处理成destrutor() ,所以父类析构函数不加virtual的情况下,子类析构函数和父类析构函数构成隐藏关系

 测试代码:

class Person
{
public:
	Person(const char* name = "peter")
		: _name(name)
	{
		cout << "Person()" << endl;
	}

	Person(const Person& p)
		: _name(p._name)
	{
			cout << "Person(const Person& p)" << endl;
	}

	Person& operator=(const Person& p)
	{
		cout << "Person operator=(const Person& p)" << endl;
		if (this != &p)
			_name = p._name;

		return *this;
	}

	~Person()
	{
		cout << "~Person()" << endl;
	}
protected:
	string _name; // 姓名
};
class Student : public Person
{
public:
	Student(const char* name, int num)
		: Person(name)
		, _num(num)
	{
		cout << "Student()" << endl;
	}

	Student(const Student& s)
		: Person(s)
		, _num(s._num)
	{
		cout << "Student(const Student& s)" << endl;
	}

	Student& operator = (const Student& s)
	{
		cout << "Student& operator= (const Student& s)" << endl;
		if (this != &s)
		{
			Person::operator =(s);
			_num = s._num;
		}
		return *this;
	}

	~Student()
	{
		cout << "~Student()" << endl;
	}
protected:
	int _num; //学号
};
int main(void)
{
	Student s1("jack", 18);
	Student s2(s1);
	Student s3("rose", 17);
	s1 = s3;

	return 0;
}

        从上例中我们可以得到一个结论,就是所谓派生类从基类中继承基类的东西,其实说白了,相当于是在派生类中弄了一个基类的子对象,对这个子对象的创建销毁操作还是要基类来干,属于是谁的娃谁来带!!!

五.继承与友元

        友元关系不可以继承。

六.继承与静态成员

        静态成员是可以被继承的,但是该静态成员的空间并没有发生改变,不会在派生类中拷贝一份。

七.多继承

        1.单继承与多继承

                单继承:

                        

                多继承:
                        

                         

        2.复杂的菱形继承以及菱形虚拟继承

                

        这个概念的提出本来还挺符合我们的日常生活的,例如:一个老师同时也可以是一个学生,同时也满足其他身份,此时一个人就具有了多种身份了,但是当我们看一下菱形继承的底层实现就明白菱形继承在代码的实现出现了什么问题。

        

        菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。 Assistant 的对象中 Person 成员会有两份。
        
        一个例子:
        
class Person
{
public :
 string _name ; // 姓名
};
class Student : public Person
{
protected :
 int _num ; //学号
};
class Teacher : public Person
{
protected :
 int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
 string _majorCourse ; // 主修课程
};
void Test ()
{
 // 这样会有二义性无法明确知道访问的是哪一个
 Assistant a ;
 a._name = "peter";
 // 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决
 a.Student::_name = "xxx";
 a.Teacher::_name = "yyy";
}

        解决方法:虚拟继承

        虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和Teacher的继承Person时使用虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地 方去使用。

class Person
{
public :
 string _name ; // 姓名
};
class Student : virtual public Person
{
protected :
 int _num ; //学号
};
class Teacher : virtual public Person
{
protected :
 int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
 string _majorCourse ; // 主修课程
};
void Test ()
{
 Assistant a ;
 a._name = "peter";
}
        虚拟继承解决数据冗余和二义性的原理:
                
                为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助内存窗口观察对象成 员的模型。
                
        一个例子:
                
        
class A
{
public:
 int _a;
};
// class B : public A
class B : virtual public A
{
public:
 int _b;
};
// class C : public A
class C : virtual public A
{
public:
 int _c;
};
class D : public B, public C
{
public:
 int _d;
};
int main()
{
 D d;
 d.B::_a = 1;
 d.C::_a = 2;
 d._b = 3;
 d._c = 4;
 d._d = 5;
 return 0;
}
下图是菱形继承的内存对象成员模型:这里可以看到数据冗余
        
        下图是菱形虚拟继承的内存对象成员模型:这里可以分析出D 对象中将 A 放到的了对象组成的最下面,这个A 同时属于 B C ,那么 B C 如何去找到公共的 A 呢? 这里是通过了 B C 的两个指针,指 向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量 可以找到下面的 A
        
        当我们将腰部的类声明为虚拟继承的时候,他们发生的变化:

         

         

        一个例题:

                

此时我们说 p2==p3!=p1对吗?

        多继承中在存储空间中先继承的在前面:

                                                 

        根据此图显然结果是正确的。

       本质上继承和组合都是一种复用,但是继承是白盒复用,组合是黑盒复用。

                因为继承是可以实打实的看到基类中的组成结构的。

                但是组合只是在其他类中定义了一个类的对象,我们只是去使用这个对象,对象的内部结构我们是不知道的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/193647.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

亚马逊、eBay店铺如何提升销量转化?掌握测评自养号的技巧

跨境电商随着互联网和物流技术的迅速发展&#xff0c;消费者可以更轻松地借助跨境电商平台在全球范围内进行购物&#xff0c;而提到跨境电商&#xff0c;亚马逊平台是不可忽视。 在竞争激烈的亚马逊市场中&#xff0c;提升销量转化率是每个卖家都追求的目标&#xff0c;高转化…

企业被列入经营异常会有什么后果?

1、工商方面的不良影响 被工商纳入异常吊销营业执照&#xff1a;公司地址异常将会被工商部门纳入经营异常名录&#xff0c;需要及时申请移出&#xff0c;否则会影响正常经营&#xff0c;严重则有被吊销营业执照的风险。 影响企业形象及信誉度&#xff1a;企业间的合作都非常重视…

git报错:error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413

git报错&#xff1a;error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 如图&#xff1a; error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 send-pack: unexpected disconnect while reading sideband packet fatal: th…

【C语言】【选择排序及其优化】

选择排序是指&#xff1a;第一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;然后再从剩余的未排序元素中寻找到最小&#xff08;大&#xff09;元素&#xff0c;然后放到已排序的序列的末尾&#xff0…

代码随想录算法训练营第六十天|84. 柱状图中最大的矩形

LeetCode 84. 柱状图中最大的矩形 题目链接&#xff1a;84. 柱状图中最大的矩形 - 力扣&#xff08;LeetCode&#xff09; 和接雨水还挺像的。 代码&#xff1a; #python class Solution:def largestRectangleArea(self, heights: List[int]) -> int:heights.insert(0, 0…

Intel Software Guard Extensions简介

文章目录 前言一、新的基于硬件的控件实现数据安全二、机密计算的挑战三、用于机密计算的增强安全功能四、Enclave验证和数据密封五、数据中心认证参考资料 前言 最近开始研究Intel SGX硬件特性&#xff0c;记录下研究过程。 参考文档&#xff1a;product-brief-SGX 一、新的…

python实现自动刷平台学时

背景 前一阵子有个朋友让我帮给小忙&#xff0c;因为他每学期都要看视频刷学时&#xff0c;一门平均需要刷500分钟&#xff0c;一学期有3-4门需要刷的。 如果是手动刷的话&#xff0c;比较麻烦&#xff0c;能否帮他做成自动化的。搞成功的话请我吃饭。为了这顿饭&#xff0c;咱…

Redis的五大数据类型详细用法

我们说 Redis 相对于 Memcache 等其他的缓存产品&#xff0c;有一个比较明显的优势就是 Redis 不仅仅支持简单的key-value类型的数据&#xff0c;同时还提供list&#xff0c;set&#xff0c;zset&#xff0c;hash等数据结构的存储。本篇博客我们就将介绍这些数据类型的详细使用…

Javaweb之Vue组件库Element之Dialog对话框的详细解析

4.3.3 Dialog对话框 4.3.3.1 组件演示 Dialog: 在保留当前页面状态的情况下&#xff0c;告知用户并承载相关操作。其企业开发应用场景示例如下图所示 首先我们需要在ElementUI官方找到Dialog组件&#xff0c;如下图所示&#xff1a; 然后复制如下代码到我们的组件文件的templ…

「江鸟中原」有关HarmonyOS-ArkTS的Http通信请求

一、Http简介 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是一种用于在Web应用程序之间进行通信的协议&#xff0c;通过运输层的TCP协议建立连接、传输数据。Http通信数据以报文的形式进行传输。Http的一次事务包括一个请求和一个响应。 Http通信是基于客户端-服…

Go 数字类型

一、数字类型 1、Golang 数据类型介绍 Go 语言中数据类型分为&#xff1a;基本数据类型和复合数据类型基本数据类型有&#xff1a; 整型、浮点型、布尔型、字符串复合数据类型有&#xff1a; 数组、切片、结构体、函数、map、通道&#xff08;channel&#xff09;、接口 2、…

Redux在React中的使用

Redux在React中的使用 1.构建方式 采用reduxjs/toolkitreact-redux的方式 安装方式 npm install reduxjs/toolkit react-redux2.使用 ①创建目录 创建store文件夹&#xff0c;然后创建index和对应的模块&#xff0c;如上图所示 ②编写counterStore.js 文章以counterStore…

C语言入门---位操作

目录 1. 两个数不同的二进制位个数 2.原码、反码、补码 3.不创建临时变量实现两个数的交换 4.求一个整数存储在内存中的二进制中1的个数 5. 特例-1 6.将指定的位置置1 7.将指定位置置1 8.a与a 9.||与&& 10.逗号表达式 11.srand与rand 12.sizeof 13.结构体初始…

时间序列预测实战(二十)自研注意力机制Attention-LSTM进行多元预测(结果可视化,自研结构)

一、本文介绍 本文给大家带来的是我利用我自研的结构进行Attention-LSTM进行时间序列预测&#xff0c;该结构是我专门为新手和刚入门的读者设计&#xff0c;包括结果可视化、支持单元预测、多元预测、模型拟合效果检测、预测未知数据、以及滚动长期预测&#xff0c;大家不仅可…

Vue框架学习笔记——侦听(监视)属性watch:天气案例+immediate+deep深度监听

文章目录 前文提要天气案例描述样例代码呈现效果&#xff1a;事件的响应中可以写一些简单的语句&#xff08;不推荐&#xff09; 侦听&#xff08;监视&#xff09;属性watch结合天气案例的第一种写法&#xff08;New Vue&#xff09;immediate&#xff1a; 侦听&#xff08;监…

linux安装部署redis

1、下载redis包2、解压3、进入解压路径编译安装4、修改配置文件使redis后台运行5、启动 1、下载redis包 https://redis.io/download/ 2、解压 tar -zxvf redis-7.2.3.tar.gz3、进入解压路径编译安装 cd redis-7.2.3 make && make install默认安装路径&#xff1a; …

某医生用 ChatGPT 在 4 个月内狂写 16 篇论文,其中 5 篇已发表,揭密ChatGPT进行论文润色与改写的秘籍

如果写过学术论文&#xff0c;想必会有这样的感受&#xff1a; 绞尽脑汁、茶饭不思、夜不能寐、废寝忘食、夜以继日&#xff0c;赶出一篇论文&#xff0c;然后还被导师点评&#xff0c;“写得就是一坨&#xff01;” 可是&#xff0c;却有人4个月产出了16篇论文&#xff0c;成功…

哈希的应用——位图

位图 题目思考 题干: 给40亿个不重复的无符号整数, 没排过序. 给一个无符号整数, 如何快速判断一个数是否在 这40亿个数中. 看到这个问题可能会想到这样的思路&#xff1a; 1. 遍历, 时间复杂度O(N) 2. 排序 二分查找 3. 利用哈希表或红黑树, 就是放到set或unordered_set里…

10个顶级Linux开源反向代理服务器 - 解析与导航

反向代理服务器是一种部署在客户端和后端/源服务器之间的代理服务器&#xff0c;例如 NGINX、Apache 等 HTTP 服务器或用 Nodejs、Python、Java、Ruby 编写的应用程序服务器、PHP 和许多其他编程语言。 它是一个网关或中间服务器&#xff0c;它接受客户端请求&#xff0c;将其传…

【MATLAB】LMD分解+FFT+HHT组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 LMDFFTHHT组合算法是一种基于局部均值分解&#xff08;LMD&#xff09;、快速傅里叶变换&#xff08;FFT&#xff09;和希尔伯特-黄变换&#xff08;HHT&#xff09;的组合算法。 LMD是…
最新文章