C++中异常的栈展开概念

C++中的异常栈展开是指,当某个函数中有异常产生(这里不考虑是主动抛出的还是被动产生的),在异常被捕获之前的函数调用链上,函数不会正常执行返回,即异常产生之后的程序逻辑不会被执行。
(注意:这里不从操作系统层面来讨论函数调用栈等相关观念)

看下面一个示例:C++ 中的异常和堆栈展开

#include <string>
#include <iostream>
using namespace std;

class MyException{};
class Dummy
{
    public:
    Dummy(string s) : MyName(s) { PrintMsg("Created Dummy:"); }
    Dummy(const Dummy& other) : MyName(other.MyName){ PrintMsg("Copy created Dummy:"); }
    ~Dummy(){ PrintMsg("Destroyed Dummy:"); }
    void PrintMsg(string s) { cout << s  << MyName <<  endl; }
    string MyName;
    int level;
};

void C(Dummy d, int i)
{
    cout << "Entering FunctionC" << endl;
    d.MyName = " C";
    throw MyException();

    cout << "Exiting FunctionC" << endl;
}

void B(Dummy d, int i)
{
    cout << "Entering FunctionB" << endl;
    d.MyName = "B";
    C(d, i + 1);
    cout << "Exiting FunctionB" << endl;
}

void A(Dummy d, int i)
{
    cout << "Entering FunctionA" << endl;
    d.MyName = " A" ;
    B(d, i + 1);
    cout << "Exiting FunctionA" << endl;
}

int main()
{
    cout << "Entering main" << endl;
    try
    {
        Dummy d(" M");
        A(d,1);
    }
    catch (MyException& e)
    {
        cout << "Caught an exception of type: " << typeid(e).name() << endl;
    }

    cout << "Exiting main." << endl;
}

/* Output:
    Entering main
    Created Dummy: M
    Copy created Dummy: M
    Entering FunctionA
    Copy created Dummy: A
    Entering FunctionB
    Copy created Dummy: B
    Entering FunctionC
    Destroyed Dummy: C
    Destroyed Dummy: B
    Destroyed Dummy: A
    Destroyed Dummy: M
    Caught an exception of type: class MyException
    Exiting main.
*/

把函数之间的调用关系用图表示,如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/207896.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RTDETR阅读笔记

RTDETR阅读笔记 摘要 DETR的高计算成本限制了它们的实际应用&#xff0c;并阻碍了它们充分利用无需后处理&#xff08;例如非最大抑制NMS&#xff09;的优势。文中首先分析了NMS对实施目标检测的精度和速度的负面影响。&#xff08;RTDETR是第一个实时端到端的目标检测器。具…

temu货不对板哪里修改图片

在Temu这个跨境电商平台上&#xff0c;如果您需要修改商品图片&#xff0c;通常需要在卖家中心进行操作。下面是一般的步骤&#xff0c;但请注意&#xff0c;不同平台的操作可能略有不同&#xff0c;具体请参考Temu官方的帮助文档或联系客服。 先给大家推荐一款拼多多/temu运营…

OpenCV快速入门:彩蛋——小游戏制作

文章目录 前言一、游戏玩法1.1 核心玩法1.2 特殊事件 二、功能模块划分2.1 主游戏文件 (main.py)2.2 游戏对象 (game_objects.py)2.3 游戏逻辑 (game_logic.py)2.4 事件和奖励 (events_and_rewards.py)2.5. 游戏界面 (game_ui.py) 三、完整代码3.1 主游戏文件 (main.py)3.1.1 游…

计算机网络(超详解!) 第二节 物理层(下)

1.信道复用技术 复用 (multiplexing) 是通信技术中的基本概念。 它允许用户使用一个共享信道进行通信&#xff0c;降低成本&#xff0c;提高利用率。 1.频分复用 FDM(Frequency Division Multiplexing) 将整个带宽分为多份&#xff0c;用户在分配到一定的频带后&#xff0c;…

20、LED点阵屏

LED点阵屏介绍 LED点阵屏由若干个独立的LED组成&#xff0c;LED以矩阵的形式排列&#xff0c;以灯珠亮灭来显示文字、图片、视频等。LED点阵屏广泛应用于各种公共场合&#xff0c;如汽车报站器、广告屏以及公告牌等 LED点阵屏分类 按颜色&#xff1a;单色、双色、全彩 按像素…

企业营销管理能够实现自动化吗?怎么做?

当今企业面临着越来越多的营销难题&#xff1a;如何有效培育潜在客户、如何提高营销活动的效果、如何优化营销资源的分配......企业的营销管理怎么做&#xff1f;或许CRM系统营销自动化会起到作用。 客户细分&#xff1a; 企业可以通过CRM的客户细分功能&#xff0c;根据客户…

【libGDX】立方体手动旋转

1 前言 本文主要介绍使用 libGDX 绘制立方体&#xff0c;并实现手动触摸事件控制立方体旋转。 为方便控制触摸旋转&#xff0c;并提高渲染性能&#xff0c;我们通过改变相机的位置和姿态实现立方体旋转效果。 读者如果对 libGDX 不太熟悉&#xff0c;请回顾以下内容。 使用Me…

11.31链表,之前的数据结构(未完,饼)

根据输入序列建立二叉树 链表 回顾一下二分面积最小 一些性质题回顾 哈夫曼树构建 第十一周——哈夫曼树 5 1 2 2 5 9 37 桶排序 #include <iostream> #include <vector> #include <algorithm> #include<stack> #include<queue> #includ…

docker部署kerberos,群晖nas中nfs开启kerberos校验

背景 nas开启nfs存储共享&#xff0c;默认情况下只能给IP/24做限制, 达不到安全效果 需要增加kerberos策略校验&#xff0c;并且持久化kerberos数据&#xff0c;避免容器重启丢失数据 环境描述 宿主机系统&#xff1a;CentOS Linux release 7.9.2009 (Core) Docker版本&#xf…

ESP32-Web-Server编程- 实现 Web 登录网页

ESP32-Web-Server编程- 实现 Web 登录网页 概述 是时候实现更加安全的网页了。登录机制是最简单的控制网页访问权限的方法。 需求及功能解析 本节演示如何在 ESP32 上部署一个 Web 服务器&#xff0c;并建立登录页面的机制&#xff0c;用户可以实现登录、登出的功能&#x…

【Python表白限定】李峋同款可写字版跳动的爱心(完整代码)

文章目录 跳动的爱心环境需求完整代码详细分析系列文章 跳动的爱心 环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0&#xff08;可选&#xff0c;这个库用于打包&#xff0c;使程序没有python环境也可以运行&#xff0c;如果想发给好朋友的话需要这…

nginx配置反向代理及负载均衡

目录 1.前端发送的请求&#xff0c;是如何请求到后端服务的1.nginx 反向代理的好处&#xff1a;2.nginx 反向代理的配置方式&#xff1a;3. nginx 负载均衡的配置方式 1.前端发送的请求&#xff0c;是如何请求到后端服务的 1.nginx 反向代理的好处&#xff1a; 提高访问速度 因…

一文解决msxml3.dll文件缺失问题,快速修复msxml3.dll

在了解问题之前&#xff0c;我们必须首先清楚msxml3.dll到底是什么。DLL&#xff08;Dynamic Link Libraries&#xff09;文件是Windows操作系统使用的一个重要组成部分&#xff0c;用于存储执行特定操作或任务的代码和数据。msxml3.dll为Windows系统提供处理XML文档的功能。如…

小米摄像头拆机教程

今天拆解一下好久不用的小米摄像头&#xff0c;记录下拆机过程&#xff0c;有需要的小伙伴可以自行查看 一、拆底座 首先拿出底座的四个橡皮塞、把对应的螺丝拧下来就可以了&#xff0c;这一步还是比较简单的 二、拆下底部排线 三、拆下底部电机和底座 按下方的红圈拆掉电机上的…

全网最新最全的Jmeter接口测试:jmeter组件元件介绍

JMeter 的主要测试组件总结如下&#xff1a; 1. 测试计划是使用 JMeter 进行测试的起点&#xff0c;它是其它 JMeter 测试元件的容器 2. 线程组代表一定数量的并发用户&#xff0c;它可以用来模拟并发用户发送请求。实际的 请求内容在Sampler中定义&#xff0c;它被线程组包含…

Redis主从复制实现RCE

文章目录 前置知识概念redis module 利用条件利用工具思路例题 [网鼎杯 2020 玄武组]SSRFMe 前置知识 概念 背景是多台服务器要保存同一份数据&#xff0c;如何实现其一致性呢&#xff1f;数据的读写操作是否每台服务器都可以处理&#xff1f;这里Redis就提供了主从复制的模式…

c++ pcl出现LNK2019 宏定义 PCL_NO_PRECOMPILE

问题&#xff1a;c pcl使用拟合圆柱时出现LNK2019问题&#xff1b; 说明&#xff1a;lib等配置没有问题&#xff1b; 解决方案 在上述代码中添加如下代码即可 #define PCL_NO_PRECOMPILE 是 C 中的预处理器指令&#xff0c;用于在代码中定义一个宏。而 #undef PCL_NO_PRECOM…

汽车行驶不同工况数据

1、内容简介 略 28-可以交流、咨询、答疑 2、内容说明 汽车行驶不同工况数据 汽车行驶不同工况数据 ECE、EUDC、FTP75、NEDC、自定义 3、仿真分析 4、参考论文 略 链接&#xff1a;https://pan.baidu.com/s/1AAJ_SlHseYpa5HAwMJlk1w 提取码&#xff1a;rvol

Unittest自动化测试之unittestunittest_生成测试报告

unittest_生成测试报告 测试报告为测试结果的统计即展示&#xff0c;是自动化测试不可或缺的一部分&#xff0c;利用unittest 可以生成测试报告 方式一、使用第三方 HTMLTestRunner 执行测试用例集&#xff0c;生成网页版测试报告&#xff08;推荐&#xff09; HTMLTestRunn…

进程与线程的区别

作者简介&#xff1a; zoro-1&#xff0c;目前大二&#xff0c;正在学习Java&#xff0c;数据结构,mysql,javaee等 作者主页&#xff1a; zoro-1的主页 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 进程与线程的区别 进程线程进程与线…
最新文章