软著项目推荐 深度学习手势识别算法实现 - opencv python

文章目录

  • 1 前言
  • 2 项目背景
  • 3 任务描述
  • 4 环境搭配
  • 5 项目实现
    • 5.1 准备数据
    • 5.2 构建网络
    • 5.3 开始训练
    • 5.4 模型评估
  • 6 识别效果
  • 7 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习手势识别算法实现 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 项目背景

手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

在这里插入图片描述

3 任务描述

图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。

实践环境:Python3.7,PaddlePaddle1.7.0。

用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter
notebook作为试验训练,在实验中会占用很大的内存,jupyter
notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度
AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。

4 环境搭配

首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。

左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。

python -m pip install paddlepaddle-gpu==1.8.3.post107 -i https://mirror.baidu.com/pypi/simple

学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的文章,这里篇幅有限,就不进行展开叙述了。

在这里插入图片描述

环境配好了,接下来就该项目实现。

5 项目实现

5.1 准备数据

首先我们导入必要的第三方库。

import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear

该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。

图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。

我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:

data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。
character_folders = os.listdir(data_path)
print(character_folders)
if (os.path.exists('./train_data.list')):
    os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):
    os.remove('./test_data.list')
for character_folder in character_folders:

    with open('./train_data.list', 'a') as f_train:
        with open('./test_data.list', 'a') as f_test:
            if character_folder == '.DS_Store':
                continue
            character_imgs = os.listdir(os.path.join(data_path, character_folder))
            count = 0
            for img in character_imgs:
                if img == '.DS_Store':
                    continue
                if count % 10 == 0:
                    f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                else:
                    f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')
                count += 1
print('列表已生成')

其效果图如图所示:

在这里插入图片描述

这里需要简单的处理图片。需要说明一些函数:

  • data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。
  • data_reader(): 按照train_list和test_list批量化读取图片。
  • train_reader(): 用于训练的数据提供器,乱序、按批次提供数据
  • test_reader():用于测试的数据提供器

具体的实现如下:

def data_mapper(sample):
    img, label = sample
    img = Image.open(img)
    img = img.resize((32, 32), Image.ANTIALIAS)
    img = np.array(img).astype('float32')
    img = img.transpose((2, 0, 1))
    img = img / 255.0
    return img, label
def data_reader(data_list_path):
    def reader():
        with open(data_list_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                img, label = line.split('\t')
                yield img, int(label)
    return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)

5.2 构建网络

在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。

因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。

接下来进行参数的设置。

train_parameters = {
    "epoch": 1,                              #训练轮数
    "batch_size": 16,                        #批次大小
    "lr":0.002,                              #学习率
    "skip_steps":10,                         #每10个批次输出一次结果
    "save_steps": 30,                        #每10个批次保存一次结果
    "checkpoints":"data/"
}

train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),
                            batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)

前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

在这里插入图片描述

首先定义一个神经网络,具体如下

class MyLeNet(fluid.dygraph.Layer):
    def __init__(self):
        super(MyLeNet, self).__init__()
        self.c1 = Conv2D(3, 6, 5, 1)
        self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c3 = Conv2D(6, 16, 5, 1)
        self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)
        self.c5 = Conv2D(16, 120, 5, 1)
        self.f6 = Linear(120, 84, act='relu')
        self.f7 = Linear(84, 10, act='softmax')
    def forward(self, input):
        # print(input.shape) 
        x = self.c1(input)
        # print(x.shape)
        x = self.s2(x)
        # print(x.shape)
        x = self.c3(x)
        # print(x.shape)
        x = self.s4(x)
        # print(x.shape)
        x = self.c5(x)
        # print(x.shape)
        x = fluid.layers.reshape(x, shape=[-1, 120])
        # print(x.shape)
        x = self.f6(x)
        y = self.f7(x)
        return y

这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。

5.3 开始训练

接下来就是训练网络。

为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:

import matplotlib.pyplot as plt
Iter=0
Iters=[]
all_train_loss=[]
all_train_accs=[]
def draw_train_process(iters,train_loss,train_accs):
    title='training loss/training accs'
    plt.title(title,fontsize=24)
    plt.xlabel('iter',fontsize=14)
    plt.ylabel('loss/acc',fontsize=14)
    plt.plot(iters,train_loss,color='red',label='training loss')
    plt.plot(iters,train_accs,color='green',label='training accs')
    plt.legend()
    plt.grid()
    plt.show()

with fluid.dygraph.guard():
    model = MyLeNet()  # 模型实例化
    model.train()  # 训练模式
    opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,
                                       parameter_list=model.parameters())  # 优化器选用SGD随机梯度下降,学习率为0.001.
    epochs_num = 250  # 迭代次数
    for pass_num in range(epochs_num):
        for batch_id, data in enumerate(train_reader()):
            images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            # print(images.shape)
            image = fluid.dygraph.to_variable(images)
            label = fluid.dygraph.to_variable(labels)
            predict = model(image)  # 预测
            # print(predict)
            loss = fluid.layers.cross_entropy(predict, label)
            avg_loss = fluid.layers.mean(loss)  # 获取loss值
            acc = fluid.layers.accuracy(predict, label)  # 计算精度
            Iter += 32
            Iters.append(Iter)
            all_train_loss.append(loss.numpy()[0])
            all_train_accs.append(acc.numpy()[0])
            if batch_id != 0 and batch_id % 50 == 0:
                print(
                    "train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(),                                                                                acc.numpy()))
            avg_loss.backward()
            opt.minimize(avg_loss)
            model.clear_gradients()
    fluid.save_dygraph(model.state_dict(), 'MyLeNet')  # 保存模型
draw_train_process(Iters, all_train_loss, all_train_accs)

训练过程以及结果如下:

在这里插入图片描述

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。

可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。

with fluid.dygraph.guard():
    accs = []
    model_dict, _ = fluid.load_dygraph('MyLeNet')
    model = MyLeNet()
    model.load_dict(model_dict)  # 加载模型参数
    model.eval()  # 训练模式
    for batch_id, data in enumerate(test_reader()):  # 测试集
        images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)
        labels = np.array([x[1] for x in data]).astype('int64')
        labels = labels[:, np.newaxis]
        image = fluid.dygraph.to_variable(images)
        label = fluid.dygraph.to_variable(labels)
        predict = model(image)
        acc = fluid.layers.accuracy(predict, label)
        accs.append(acc.numpy()[0])
        avg_acc = np.mean(accs)
    print(avg_acc)

5.4 模型评估

配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

在这里插入图片描述

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。

6 识别效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/210589.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分享83个节日PPT,总有一款适合您

分享83个节日PPT,总有一款适合您 83个节日PPT下载链接:https://pan.baidu.com/s/1xX4tVpl3sSW-d2nlFzN-mg?pwd6666 提取码:6666 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易…

《数字图像处理-OpenCV/Python》连载(50)非线性灰度变换

《数字图像处理-OpenCV/Python》连载(50)非线性灰度变换 本书京东优惠购书链接:https://item.jd.com/14098452.html 本书CSDN独家连载专栏:https://blog.csdn.net/youcans/category_12418787.html 第 7 章 图像的灰度变换 灰度变…

基于瑞芯微rk3588+寒武纪 | 38TOPS INT8算力的AI边缘计算盒子,智能安防、智慧工地、智慧城管、智慧油站

边缘计算盒子 瑞芯微rk3588寒武纪 | 38TOPS INT8算力 ● 采用 Big-Little 大小核架构,搭载四核 A76四核 A55,CPU主频高达 2.4GHz ,提供1MB L2 Cache 和 3MB L3 ,Cache提供更强的 CPU 运算能力。 ● 高性能四核 Mali-G610 GPU&a…

Tmux奇技淫巧

Tmux奇技淫巧 在日常的开发工作中,终端是我们最常用的工具之一。在终端中我们可以调用各种解释器,来执行命令,完成我们的工作。然而,对于只使用终端的默认功能的开发者来说,他们可能会错过一些强大的工具和技巧&#…

户外电力检测设备,如何实现远程数据实时互通?

北京某企业专注于电力设备的局部放电检测与监测技术的研究与实践应用,可提供局部放电开关柜检测、高频局部放电发电机检测、电力设备绝缘检测等方案。 在实际项目实施过程,企业工作人员需要在各地电力设施部署放电监测设备并进行检测。由于经常涉及户外的…

SLURM资源调度管理系统REST API服务配置,基于slurm22.05.9,centos9stream默认版本

前面给大家将了一下slurm集群的简单配置,这里给大家再提升一下,配置slurm服务的restful的api,这样大家可以将slurm服务通过api整合到桌面或者网页端,通过桌面或者网页界面进行管理。 1、SLURM集群配置 这里请大家参考&#xff1…

今天给大家分享一套Python入门基础测试题,大家看看都会做吗?

今天给大家分享一套Python入门基础测试题,大家看看都会做吗? 一、测试题 1. 正确下载Anaconda平台或Python安装包并成功安装。 2. 掌握Python注释与print()和input()两个函数的用法,并作答以下选择题(不定项选择,正…

【UGUI】事件侦听EventSystem系统0学

前言介绍 EventSystem是Unity UGUI中的一个重要组件,用于处理用户输入事件,如点击、拖拽、滚动等。它负责将用户输入事件传递给合适的UI元素,并触发相应的事件回调函数(就是你想要做的事情,自定义函数)。 …

学生备考护眼灯哪个牌子好?值得入手的护眼台灯推荐

护眼台灯作为这几年人们很关注的电器产品,家里有孩子或者是经常面对电子设备的人士,相信都会对其有所了解并且购买了护眼台灯,但是还有些家长对护眼台灯的认知不够深,以至于还没有给孩子安排上护眼台灯,还在疑惑护眼台…

[ 蓝桥杯Web真题 ]-年度明星项目

目录 引入 介绍 准备 目标 效果 规定 思路 知识补充 解答参考 引入 hello,大家好!我注意到了之前发的一篇蓝桥杯Web应用开发的文章是关注度最高的,可能大部分关注我的小伙伴对蓝桥杯Web应用开发比较感兴趣,或者想要参加…

利用Python中的Manim进行数学绘画和创作

相信很多同学就算没听过3Blue1Brown,也一定曾看过他们出品的视频,其从独特的视觉角度解说各种数学概念,内容包括线性代数、微积分、神经网络、傅里叶变换以及四元数等晦涩难懂的知识点。例如最火的《线性代数本质》系列视频。 那么这些视频是…

Fiddler抓包工具之fiddler的命令行窗口用法

fiddler的命令行窗口的相关命令 在fiddler官网有QuickExec使用教程,地址是QuickExec Reference - Fiddler Classic QuickExec 命令行窗口位于fiddler左下角黑色输入框,如下图: 按ALT Q,将焦点快速设置到QuickExec框。如果Fiddl…

【问题解决】Linux内核编译安装后磁盘空间已满问题

Linux内核编译安装后磁盘空间已满问题解决过程 【注】本文为个人遇到Linux内核经过make,make modules……乃至最后install以后VMware磁盘空间爆炸的情况后,而又不想重装虚拟机,自己找资料实现解决的,文章中很多链接是来自别的博主…

CGAL的三维曲面网格生成

1、介绍 此程序包提供了一个函数模板,用于计算三角网格,以近似表面。 网格化算法要求仅通过一个能够判断给定线段、直线或射线是否与曲面相交,并且如果相交则计算交点的oracle来了解待网格化的表面。这一特性使该软件包具有足够的通用性&…

欧洲各国及发达国家经济支柱和第一出口商品是什么

工业在欧洲各国经济支柱中的表现 一般发达国家,像西欧的国家第三产业即服务业占GDP70%甚至更高,从业人数比重也最大,只是越发达的国家服务业的知识性和科技含量会更高,如商业咨询、律师、医疗卫生、科技服务、商业服务。服务业的…

Hdoop学习笔记(HDP)-Part.07 安装MySQL

目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …

人工智能原理复习--确定性推理

文章目录 上一篇推理概述自然演绎推理合适公式 归结演绎推理归结原理归结反演 提升归结效率下一篇 上一篇 人工智能原理复习–知识表示(二) 推理概述 推理就是按某种策略由已知判断推出另一判断的思维过程 分类: 演绎推理、归纳推理、默…

2023年第十二届数学建模国际赛小美赛C题雪崩防范求解分析

2023年第十二届数学建模国际赛小美赛 C题 雪崩防范 原题再现: 雪崩是极其危险的现象。现在,我们对雪崩是如何形成的已经有了很好的理解,但是我们还不能详细地预测雪崩发生的原因、时间和地点。村庄和道路可以通过各种方式防止雪崩。避免在脆…

浅析SD-WAN企业组网部署中简化网络运维的关键技术

网络已经成为现代企业不可或缺的基础设施,它为企业提供了连接全球的桥梁。随着全球化和数字化转型的加速推进,企业面临着越来越多的网络挑战和压力。传统的网络组网方式往往无法满足企业规模扩大、分支机构增多、上云服务等需求,导致网络性能…

python datetime 获取特定一天的后一天或者后几天

这里写自定义目录标题 1 获取特定天的时间对象 具体时间格式参考:Python time strptime()和strftime()-CSDN博客 import datetimetimer datetime.datetime.strptime(date, "%Y-%m-%d")2 获取下一天或者【下x天】的数据并进行格式转换 # 下一天数据 ne…
最新文章