超大规模集成电路设计----MOS器件原理(二)

本文仅供学习,不作任何商业用途,严禁转载。绝大部分资料来自----数字集成电路——电路、系统与设计(第二版)及中国科学院段成华教授PPT

超大规模集成电路设计----MOS器件原理(二)

  • 半导体物理知识补充
    • 介绍
      • 1. 半导体材料
      • 2. 固体类型
    • 二极管Diode
      • The built-in potential barrier
      • Concentrations
    • 静态行为
      • 1.理想二极管方程
      • 2. 手工分析模型 Manual Analysis
      • 3. 动态或者瞬态行为
  • 对MOS器件的定性理解Qualitative understanding of MOS devices
    • 晶体管及其参数的一般概述
      • 电路符号symbols
    • 分析MOS管的静态和动态效应
      • The MOS Transistor under Static Conditions
        • 1. The Threshold Voltage
        • 2. Resistive Operation/线性工作
        • 3. The Saturation Region
        • 4. Channel-Length Modulation
        • 5. Velocity Saturation
        • 6. Drain Current versus Voltage Charts
        • 7. Subthreshold Conduction
        • 8. In Summary – Models for Manual Analysis
        • 9. NMOS transistor modeled as a switch
    • 二阶效应
  • 用于手动分析的简单组件模型Simple component models for manual analysis
  • SPICE的详细组件模型Detailed component models for SPICE
  • 工艺变化的影响Impact of process variations
  • FinFET:前景与挑战FinFET: The Promises and the Challenges

半导体物理知识补充

介绍

  • 工程前提The engineering premise
    It is a well-known premise in engineering that the conception of a complex construction without a prior understanding of the underlying building blocks is a sure road to failure.在工程学中,一个众所周知的前提是,在没有事先了解底层构建块的情况下,复杂结构的概念是一条必经之路。
  • The goal
    Our goal is to describe the functional operation of the devices, to highlight the properties and parameters that are particularly important in
    the design of digital gates.我们的目标是描述设备的功能操作,突出在数字门设计中特别重要的特性和参数。
  • The models
    We present both first-order models for manual analysis as well as higher-order models for simulation for each component of interest.
    我们提供了用于手动分析的一阶模型,以及用于模拟每个感兴趣组件的高阶模型。
  • Actual parameters and process variations 实际参数和工艺变化

1. 半导体材料

在这里插入图片描述
上面都是可以制作半导体的材料

2. 固体类型

非晶体Amorphous materials have order only within a few atoms or molecular dimension.完全乱的
多晶Polycrystalline materials have a high degree of order over many atoms or molecular dimensions. 局部规则
单晶Single-crystal materials, ideally, have a high degree of order, or regular geometric periodicity, through the entire volume of the material. 全部规则

在这里插入图片描述

二极管Diode

  • P型材料,一般是在硅里面掺杂硼B等三价材料,因为B三个电子,抢走了Si的一个电子,留下了空穴。所以叫P型材料,把B称为受主杂质(acceptor)
  • N型材料,一般是在硅里面掺杂磷P等五价材料,因为P五个电子,多了一个电子,所以叫N型材料,把P称为施主杂质(donor)

我们把电子和空穴统称为载流子(carriers)。
在这里插入图片描述
NA 和 ND 分别是 pn 结的 p 区和 n 区的受主杂质和施主杂质的浓度。
最初,边界处的电子和空穴浓度都存在较大的浓度梯度。多数载流子电子将开始从 n 区域扩散到 p 区域,多数载流子空穴将从 p 扩散到 n。在结点处,大多数载流子中和,留下固定(不动)受体和供体离子的区域(净带正电荷和负电荷)称为耗尽区或空间电荷区。 电荷在边界上产生一个电场,从 n 区引导到 p 区。 它使电子从 p 漂移到 n,空穴从 n 漂移到 p。

The built-in potential barrier

在零偏置下,结两端存在电压 Φ0,称为内建电势。

在这里插入图片描述
其中ΦT为热电压
在这里插入图片描述

Concentrations

室温下,硅的本征载流子浓度 n i = 1.5 × 1 0 10 c m − 3 n_i= 1.5 \times10^{10} cm^{-3} ni=1.5×1010cm3
不同符号所表示浓度不同,如下图所示
在这里插入图片描述

静态行为

1.理想二极管方程

I D = I S ( e V D / Φ T − 1 ) I_D=I_S\left(e^{V_D / \Phi_T}-1\right) ID=IS(eVD/ΦT1)

ΦT是热电压,在室温下等于26 mV
IS 表示一个恒定值,称为二极管的饱和电流

2. 手工分析模型 Manual Analysis

在这里插入图片描述
在一阶模型中,可以合理地假设导电二极管上有一个固定的压降 V Don  V_{\text {Don }} VDon 。虽然 V Don  V_{\text {Don }} VDon 的值取决于IS,但通常假定值为0.7 V。下面看一个例子。

在这里插入图片描述

3. 动态或者瞬态行为

事实上,MOS数字集成电路中的所有二极管都是反向偏置的,并且在任何情况下都应该保持反向偏置。 因此,我们将只关注在反向偏置条件下控制二极管动态响应的因素,即耗尽区电荷。

  1. Depletion-Region Capacitance
    (1) Depletion-region charge (VD is positive for forward bias).
    Q j = A D ( 2 ε s i q N A N D N A + N D ) ( ϕ 0 − V D ) Q_j=A_D \sqrt{\left(2 \varepsilon_{s i} q \frac{N_A N_D}{N_A+N_D}\right)\left(\phi_0-V_D\right)} Qj=AD(2εsiqNA+NDNAND)(ϕ0VD)
    (2) Depletion-region width.
    W j = W 2 − W 1 = ( 2 ε s i N A + N D q N A N D N A N D ) ( ϕ 0 − V D ) W_{j}=W_{2}-W_{1}=\sqrt{\left(\frac{2\varepsilon_{si}N_{A}+N_{D}}{q}\frac{N_{A}N_{D}}{N_{A}N_{D}}\right)(\phi_{0}-V_{D})} Wj=W2W1=(q2εsiNA+NDNANDNAND)(ϕ0VD)
    (3) Maximum electric field.
    E j = ( 2 q ε s i N A N D N A + N D ) ( ϕ 0 − V D ) E_j=\sqrt{\left(\frac{2q}{\varepsilon_{si}}\frac{N_AN_D}{N_A+N_D}\right)(\phi_0-V_D)} Ej=(εsi2qNA+NDNAND)(ϕ0VD)
    Φ0 is the built-in potential, ε s i ε_{si} εsi stands for the (相对介电常数)electrical permittivity of silicon and equals 11.7 times the permittivity of a vacuum. W2/(-W1) = NA/ND。 我们取硅的相对介电常数为11.7

A depletion-layer capacitance can be defined
C j = d Q j d V D = A D ( ε i q 2 N A N D N A + N D ) ( ϕ 0 − V D ) − 1 = C j 0 1 − V D / ϕ 0 \begin{aligned}C_j&=\frac{\mathrm{d}Q_j}{\mathrm{d}V_D}=A_D\sqrt{\left(\frac{\varepsilon_iq}{2}\frac{N_AN_D}{N_A+N_D}\right)(\phi_0-V_D)^{-1}}\\&=\frac{C_{j0}}{\sqrt{1-V_D/\phi_0}}\end{aligned} Cj=dVDdQj=AD(2εiqNA+NDNAND)(ϕ0VD)1 =1VD/ϕ0 Cj0

where C j 0 C_{j0} Cj0 is the capacitance under zero-bias conditions and is only a function of the physical parameters of the device.
C j 0 = A D ( ε s i q 2 N A N D N A + N D ) ϕ 0 − 1 C_{j0}=A_{D}\sqrt{\left(\frac{\varepsilon_{si}q}{2}\frac{N_{A}N_{D}}{N_{A}+N_{D}}\right)\phi_{0}^{-1}} Cj0=AD(2εsiqNA+NDNAND)ϕ01

对于线性梯度结,可以提供结电容的更通用表达式
C j = C j 0 ( 1 − V D / ϕ 0 ) m C_j=\frac{C_{j0}}{(1-V_D/\phi_0)^m} Cj=(1VD/ϕ0)mCj0 重要公式,需要记住!
where m m m is called the grading coefficient and equals 1/2 for the abrupt junction and 1/3 for the linear or graded junction.

在这里插入图片描述
可以观察到很强的非线性依赖性。另请注意,电容会随着反向偏置的增加而减小:5 V的反向偏置会使电容减小两倍以上

  1. 大信号耗尽区电容
    定义了一个等效的线性电容 C e q C_{eq} Ceq,即对于从电压 V h i g h V_{high} Vhigh V l o w V_{low} Vlow, 的给定电压摆幅,转移的电荷量与非线性模型预测的电荷量相同。意思就是说,就是我们定义一个等效电容,让这个等效电容反偏电压变化与真实二极管电压变化一致,用真实二极管电容变化的电荷量,比上这个电压变化量,就是等效电容 C e q C_{eq} Ceq的大小。
    C e q = Δ Q j Δ V D = Q j ( V h i g h ) − Q j ( V l o w ) V h i g h − V l o w = K e q C j 0 C_{eq}=\frac{\Delta Q_{j}}{\Delta V_{D}}=\frac{Q_{j}(V_{high})-Q_{j}(V_{low})}{V_{high}-V_{low}}=K_{eq}C_{j0} Ceq=ΔVDΔQj=VhighVlowQj(Vhigh)Qj(Vlow)=KeqCj0

K e q = − ϕ 0 m ( V h i g h − V l o w ) ( 1 − m ) [ ( ϕ 0 − V h i g h ) 1 − m − ( ϕ 0 − V l o w ) 1 − m ] K_{eq}=\frac{-\phi_{0}^{m}}{(V_{high}-V_{low})(1-m)}[(\phi_{0}-V_{high})^{1-m}-(\phi_{0}-V_{low})^{1-m}] Keq=(VhighVlow)(1m)ϕ0m[(ϕ0Vhigh)1m(ϕ0Vlow)1m]

对MOS器件的定性理解Qualitative understanding of MOS devices

The workhorse of contemporary digital design!
✓ Performing very well as a switch;开关特性
✓ Introducing little parasitic effects;
✓ Heave integration density ;
✓ Relatively “simple” manufacturing process; 制作工艺相对简单
✓ Producing large and complex circuits in an economical way.

晶体管及其参数的一般概述

A general overview of the transistor and its parameters
CMOS (Complementary MOS): NMOS + PMOS
NMOS transistor: n+ drain and source regions, embedded in a p-type substrate. The current is carried by electrons moving through an n-type channel between source and drain
PMOS device: p+ drain and source regions, using an n-type substrate . The current is carried by holes moving through a p-type channel.
在这里插入图片描述

电路符号symbols

在这里插入图片描述
If the fourth terminal is not shown, it is assumed that the body is connected to the appropriate supply.

分析MOS管的静态和动态效应

An analytical description of the transistor from a static (steady state) and dynamic (transient) viewpoint

The MOS Transistor under Static Conditions

1. The Threshold Voltage
  1. The depletion region
    正的栅极电压导致正电荷在栅极上积聚,负电荷积聚在衬底侧。后者最初通过排斥移动的空穴来表现出来。因此,在栅极下方形成一个耗尽区。
    在这里插入图片描述

The width:
W d = 2 ε s i ϕ q N A W_d=\sqrt{\frac{2\varepsilon_{si}\phi}{qN_A}} Wd=qNA2εsiϕ

The space charge per unit area:
Q d = − 2 q N A ε s i ϕ Q_d=-\sqrt{2qN_A\varepsilon_{si}\phi} Qd=2qNAεsiϕ
NA为衬底掺杂,Φ为耗尽层两端的电压(即氧化物-硅边界处的电位)

  1. Strong inversion layer
    随着栅极电压 (VGS) 的增加,硅表面的电位 (ΦS) 在某个点达到临界值,此时半导体表面反转为 n 型材料。该点标志着一种称为强反转的现象的开始,并且发生在等于费米势两倍的电压(ΦF = -0.3 V,对于典型的p型硅衬底)下

ϕ F = − ϕ T l n ( N A n i ) Φ S : Φ F → − Φ F Φ = Φ S − Φ F = 2 ∣ Φ F ∣ \begin{aligned} &\phi_{F}=-\phi_{T}\mathrm{ln}(\frac{N_{A}}{n_{i}}) \\ &\mathbf{\Phi}_{S}:\mathbf{\Phi}_{F}\rightarrow-\mathbf{\Phi}_{F} \\ &\Phi=\Phi_{S}-\Phi_{F}=2\left|\Phi_{F}\right| \end{aligned} ϕF=ϕTln(niNA)ΦS:ΦFΦFΦ=ΦSΦF=2ΦF
费米能级定义为在平衡系统中电子占据空态的概率为 50% 的线。
For n-type silicon substrate
Φ F n = k T q ln ⁡ N D n i > 0 \Phi_{Fn}=\frac{kT}q\ln\frac{N_D}{n_i}>0 ΦFn=qkTlnniND>0

Strong inversion Φ ≥ 2 ∣ Φ F ∣ \Phi \ge 2|\Phi_F| Φ2∣ΦF
Weak inversion ∣ Φ F ∣ ≤ Φ ≤ 2 ∣ Φ F ∣ |\Phi_F|\leq\Phi\leq2\left|\Phi_F\right| ΦFΦ2ΦF
Depletion 0 ≤ Φ ≤ ∣ Φ F ∣ 0\leq\Phi\leq\mid\Phi_F\mid 0Φ≤∣ΦF
Φ = 2 ∣ Φ F ∣ \Phi=2\left|\Phi_F\right| Φ=2ΦF的条件下,表面移动电子的密度等于原始衬底或体中移动空穴的密度。

  1. Depletion region charge with an inverse layer
    In the presence of an inversion layer, the charge stored in the depletion region is fixed and equals (p-type substrate)
  2. The threshold voltage VT
    The value of VGS where strong inversion occurs is called the threshold voltage VT.
    VT is a function of several components, most of which are material constants:
    (1) the difference in work-function between gate and substrate material,
    (2) the oxide thickness,
    (3) the Fermi voltage,
    (4) the charge of impurities trapped at the surface between channel and gate oxide,
    (5) the dosage of ions implanted for threshold adjustment, and
    (6) the source-bulk voltage VSB has an impact on the threshold as well

We rely on an empirical parameter called VT0, which is the threshold voltage for VSB = 0.
V T = V T 0 + γ ( ∣ − 2 ϕ F + V S B ∣ − ∣ − 2 ϕ F ∣ ) V_{T}=V_{T0}+\gamma(\sqrt{\left|-2\phi_{F}+V_{SB}\right|}-\sqrt{\left|-2\phi_{F}\right|}) VT=VT0+γ(2ϕF+VSB 2ϕF )
The parameter γ (gamma) is called the body-effect coefficient, and expresses the impact of changes in VSB.
γ = 1 C o x 2 q ε s i N A \gamma=\frac1{Cox}\sqrt{2q\varepsilon_{si}N_A} γ=Cox12qεsiNA 体效应系数的公式要记住
Observe that the threshold voltage has a positive value for a typical NMOS device, while it is negative for a normal PMOS transistor
For NMOS, VT > 0
For PMOS, VT < 0
在这里插入图片描述
下面来看一道例题
在这里插入图片描述

注意,二氧化硅的相对介电常数为3.97,硅的相对介电常数为11.7

2. Resistive Operation/线性工作

I D = κ n ′ W L [ ( V G S − V T ) V D S − V D S 2 2 ] I D = κ n [ ( V G S − V T ) V D S − V D S 2 2 ] \begin{gathered} I_D \begin{aligned}=\kappa_{n}'\frac{W}{L}\Bigg[(V_{GS}-V_{T})V_{DS}-\frac{V_{DS}^{2}}{2}\Bigg]\end{aligned} \\ I_D =\kappa_n\Biggl[(V_{GS}-V_T)V_{DS}-\frac{V_{DS}^2}2\Biggr] \end{gathered} ID=κnLW[(VGSVT)VDS2VDS2]ID=κn[(VGSVT)VDS2VDS2]
K n ′ = μ n C o x = μ n E o x t o x {K_n}^{\prime}=\mu_nC_{ox}=\frac{\mu_n{\mathcal E}_{ox}}{t_{ox}} Kn=μnCox=toxμnEox
κ n = κ n ’ W L \kappa_n=\kappa_n’\frac WL κn=κnLW这是增益因子
在这里插入图片描述

有效沟道长度和宽度的概念:
由于源极和漏极区域 (L) 的横向扩散和隔离场氧化物 (W) 的侵占,

W = W D − Δ W L = L D − Δ L \begin{aligned}W&=W_D-\Delta W\\L&=L_D-\Delta L\end{aligned} WL=WDΔW=LDΔL
其中 D 下标标记的数量是在画版图时的绘制尺寸。

3. The Saturation Region

感应电荷为零,导电通道消失或被捏断时处于饱和区
在这里插入图片描述
饱和区大信号电流方程
I D S A T = 1 2 κ n ’ W L ( V G S − V T ) 2 I_{DSAT}=\frac12\kappa_n’\frac WL(V_{GS}-V_T)^2 IDSAT=21κnLW(VGSVT)2

4. Channel-Length Modulation

VDS的增加会导致漏极结处的耗尽区增大,从而缩短有效通道的长度。
I D = I D ′ ( 1 + λ V D S ) I_{D}=I_{D}{'}(1+\lambda V_{DS}) ID=ID(1+λVDS)

其中 ID ’ 是先前推导的电流表达式,λ 是经验参数,称为沟道长度调制。
λ ∝ 1 L \lambda\propto\frac1L λL1

5. Velocity Saturation

==首先速度饱和效应不是短沟道效应!但是也是短沟道器件具有的特点!==具有极短沟道长度的晶体管(称为短沟道器件)的行为与前几段中介绍的电阻和饱和模型有很大不同。造成这种缺陷的罪魁祸首是速度饱和效应。

当沿沟道的电场达到临界值ξc时,由于散射效应(载流子遭受碰撞),载流子的速度趋于饱和。
我们直接记忆由于速度饱和而修正后的线性区和饱和区公式。
线性区:
I D = μ n C o x ( W L ) [ ( V G S − V T ) V D S − V D S 2 2 ] κ ( V D S ) I_D=\mu_nC_{ox}(\frac WL)[(V_{GS}-V_T)V_{DS}-\frac{V_{DS}^2}2]\kappa(V_{DS}) ID=μnCox(LW)[(VGSVT)VDS2VDS2]κ(VDS)

其中 κ ( V ) = 1 1 + ( V / ( ξ c L ) ) = 1 1 + ( V / L ) / ξ c \kappa(V)=\frac1{1+\left(V/\left(\xi_cL\right)\right)}=\frac1{1+\left(V/L\right)/\xi_c} κ(V)=1+(V/(ξcL))1=1+(V/L)/ξc1
另外注意,这里的 κ \kappa κ函数代入的是VDS

饱和区:
V D S A T = V G T ξ c L V G T + ξ c L = κ ( V G T ) V G T I D S A T = ν s a t C o x ( V G S − V T − V D S A T ) W = ν s a t C o x W V G T 2 V G T + ξ c L \begin{aligned}V_{DSAT}&=\frac{V_{GT}\xi_cL}{V_{GT}+\xi_cL}=\kappa(V_{GT})V_{GT}\\I_{DSAT}&=\nu_{sat}C_{ox}(V_{GS}-V_T-V_{DSAT})W=\nu_{sat}C_{ox}W\frac{V_{GT}^2}{V_{GT}+\xi_cL}\end{aligned} VDSATIDSAT=VGT+ξcLVGTξcL=κ(VGT)VGT=νsatCox(VGSVTVDSAT)W=νsatCoxWVGT+ξcLVGT2
其中 κ ( V ) = 1 1 + ( V / ( ξ c L ) ) = 1 1 + ( V / L ) / ξ c \kappa(V)=\frac1{1+\left(V/\left(\xi_cL\right)\right)}=\frac1{1+\left(V/L\right)/\xi_c} κ(V)=1+(V/(ξcL))1=1+(V/L)/ξc1
另外注意,这里的 κ \kappa κ函数代入的是VGT ,VGT= VGS-VTH

在这里插入图片描述
对于短通道器件和足够大的 VGT 值,k(VGT) 明显小于 1,因此 VDSAT < VGT。器件在 VDS 达到 VGS - VT 之前进入饱和状态。

要记住沟道长度调制效应同样会影响速度饱和!
I D S A T = I D S A T ( 1 + λ V D S ) I_{DSAT}=I_{DSAT}\left(1+\lambda V_{DS}\right) IDSAT=IDSAT(1+λVDS)

同时载流子迁移率un也是会改变的。
μ n , e f f = μ n 0 1 + η ( V G S − V T ) \mu_{n,eff}=\frac{\mu_{n0}}{1+\eta(V_{GS}-V_T)} μn,eff=1+η(VGSVT)μn0

下面我们来看两道例题
在这里插入图片描述
在这里插入图片描述
上面两个例题都是在这个假定之下的
在这里插入图片描述

6. Drain Current versus Voltage Charts

采用0.25 μm CMOS技术的长沟道和短沟道NMOS晶体管的I-V特性。两个晶体管的 (W/L) 比率相同,等于 1.5

在这里插入图片描述
NMOS晶体管ID-VGS特性,适用于长沟道和短沟道器件(0.25μm CMOS技术)。W/L = 1.5(两个晶体管),VDS = 2.5 V

在这里插入图片描述

7. Subthreshold Conduction
8. In Summary – Models for Manual Analysis
9. NMOS transistor modeled as a switch

二阶效应

Some second-order effects

用于手动分析的简单组件模型Simple component models for manual analysis

SPICE的详细组件模型Detailed component models for SPICE

工艺变化的影响Impact of process variations

FinFET:前景与挑战FinFET: The Promises and the Challenges

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/214458.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker快速创建一个单机版的Jenkins实例

谈到 CI/CD&#xff0c;那便少不了这里面的佼佼者 Jenkins&#xff0c;正如 Jenkins 官网说的一样&#xff1a;“Build great things at any scale”&#xff0c;构建伟大&#xff0c;无所不能&#xff01; 话不多说&#xff0c;该篇文章将会带你使用 Docker 快速创建一个单机…

计算机网络(一)| 概述 因特网 性能 协议基本

文章目录 1. 因特网组成1.1 四元素组成1.2 二元素组成1.3 核心部分 2.计算机网路的功能3. 几种不同类别的网络4 性能指标5 网路协议5.1网络体系结构 6 PDU 互联网&#xff08;或因特网&#xff09;之所以能够向用户提供服务&#xff0c;是因为互联网具有两个重要基本特点 连通性…

Siemens-NXUG二次开发-C/C++/Python环境配置[20231204]

Siemens-NXUG二次开发-C/C/Python运行方式[20231204] 1.NX/UG C/C/Python API官方开发文档2.运行方式2.1内部模式2.2 外部模式2.3 许可证书服务器启动 3.C/C环境配置4.Python环境配置5.第三方环境配置 1.NX/UG C/C/Python API官方开发文档 西门子NX/UG Python api开发文档&…

C++ day48 打家劫舍

题目1&#xff1a;198 打家劫舍 题目链接&#xff1a;打家劫舍 对题目的理解 专业小偷偷盗房屋的钱财&#xff0c;每个房屋存放的金额用非负整数数组表示&#xff1b; 如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警&#xff1b; 不触动警报装置的情况…

简单3D姿态基线模型网络架构与验证【SIM】

在这篇文章中&#xff0c;我们将回顾 ICCV’17 上提出的 Simple 3D Pose Baseline &#xff0c;即用于 3d 人体姿势估计的简单而有效的基线&#xff0c;也称为 SIM。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在…

Pandas进阶:拼接 concat 使用方法

1.处理索引和轴 假设我们有2个关于考试成绩的数据集。 df1 pd.DataFrame&#xff08;{ name&#xff1a;[A&#xff0c;B&#xff0c;C&#xff0c;D]&#xff0c;math&#xff1a;[60,89,82,70]&#xff0c;physics&#xff1a;[66&#xff0c; 95,83,66]&#xff0c;chemi…

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204]

Siemens-NXUG二次开发-新建与保存prt文件[Python UF][20231204] 1.python uf函数1.1 NXOpen.UF.Part.New1.2 NXOpen.UF.Part.Save1.3 NXOpen.UF.Ui.OpenListingWindow1.4 NXOpen.UF.Ui.IsListingWindowOpen1.5 NXOpen.UF.Ui.WriteListingWindow1.6 NXOpen.UF.Ui.SaveListingWin…

Spring MVC学习随笔-文件下载和上传(配置文件上传解析器multipartResolver)

学习视频&#xff1a;孙哥说SpringMVC&#xff1a;结合Thymeleaf&#xff0c;重塑你的MVC世界&#xff01;&#xff5c;前所未有的Web开发探索之旅 学习视频&#xff1a;【编程不良人】继spring之后快速入门springmvc,面对SpringMVC不用慌 六、SpringMVC 文件上传下载 6.1 文件…

LeetCode(49)用最少数量的箭引爆气球【区间】【中等】

目录 1.题目2.答案3.提交结果截图 链接&#xff1a; 用最少数量的箭引爆气球 1.题目 有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points &#xff0c;其中points[i] [x_start, x_end] 表示水平直径在 x_start 和 x_end之间的气球。你不知道气…

【WPF.NET开发】创建简单WPF应用

本文内容 先决条件什么是 WPF&#xff1f;配置 IDE创建项目设计用户界面 (UI)调试并测试应用程序 通过本文你将熟悉在使用 Visual Studio 开发应用程序时可使用的许多工具、对话框和设计器。 你将创建“Hello, World”应用程序、设计 UI、添加代码并调试错误。在此期间&#…

leetcode 142.环形链表2

我来更新 leetcode 题目了&#xff0c;接着上一次&#xff0c;这一次是上一道题目的提升&#xff08;有点数学题的感觉&#xff09; 142.环形链表2 题目 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表…

CCKS2023-面向上市公司主营业务的实体链接评测-亚军方案

赛题分析 大赛地址 https://tianchi.aliyun.com/competition/entrance/532097/information 任务描述 本次任务主要针对上市公司的主营业务进行产品实体链接。需要获得主营业务中的产品实体&#xff0c;将该实体链接到产品数据库中的某一个标准产品实体。产品数据库将发布在竞赛…

RK3568平台开发系列讲解(Linux系统篇) dtb 到 device_node 的转化

🚀返回专栏总目录 文章目录 一、dtb 展开流程二、dtb 解析过程源码分析沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍通过设备树 dtb 如何展开成 device_node 一、dtb 展开流程 设备树源文件编写: 根据设备树的基本语法和相关知识编写符合规范的设备树。…

工具类整理

常用工具类 在java的庞大体系中&#xff0c;其实有很多不错的小工具&#xff0c;也就是我们平常说的&#xff1a;轮子。 CollectionUtils 目前比较主流的是spring的org.springframework.util包下的CollectionUtils工具类。和apache的org.apache.commons.collections包下的Co…

根据豆瓣对《流浪地球》的短评数据进行文本分析和挖掘

1背景 2019年2月5日电影《流浪地球》正式在中国内地上映。该电影在举行首映的时候&#xff0c;口德好得出奇&#xff0c;所有去看片的业界大咖都发出了画样赞叹&#xff0c;文化学者能锦说:“中国科幻电影元年开启了。"导演徐峰则说&#xff0c;“里程碑式的电影&#xf…

实时流式计算 kafkaStream

文章目录 实时流式计算Kafka StreamKafka Streams 的关键概念KStreamKafka Stream入门案例编写SpringBoot 集成 Kafka Stream 实时流式计算 一般流式计算会与批量计算相比较 流式计算就相当于上图的右侧扶梯&#xff0c;是可以源源不断的产生数据&#xff0c;源源不断的接收数…

WEB服务器配置与HTTP分析

目录 实验目的&#xff1a; 实验要求&#xff1a; 实验原理&#xff1a; 实验步骤&#xff1a; 步骤1&#xff1a;创建拓扑 步骤2&#xff1a;为PC、Client和Server配置IPv4地址、子网掩码和域名服务器 步骤3&#xff1a;启动设备和服务器 步骤4&#xff1a;测试PC-1、C…

【Qt开发流程】之自定义语法高亮和使用HTML语法

描述 语法高亮&#xff08;Syntax Highlighting&#xff09;是一种在编辑器中突出显示代码语法元素的技术&#xff0c;使其更易于阅读和理解。 Qt提供了一个功能齐全的语法高亮框架&#xff0c;支持多种语言和格式&#xff0c;可以自定义颜色和样式。 对于使用Qt的开发人员来说…

HADOOP::Fsimage和Edits解析

NameNode被格式化之后&#xff0c;将在/opt/module hadoop-3.1.3/data/tmp/dfs/name/curent目录 中产生如下文件 fsimage_ 0000000000000000000 fsimage_ 0000000000000000000.md5 seen_txid VERSION (1) Fsimage文件: HDFS文件系统元数据的一个永久性的检查点&#xff0…

使用pytorch从零开始实现迷你GPT

生成式建模知识回顾: [1] 生成式建模概述 [2] Transformer I&#xff0c;Transformer II [3] 变分自编码器 [4] 生成对抗网络&#xff0c;高级生成对抗网络 I&#xff0c;高级生成对抗网络 II [5] 自回归模型 [6] 归一化流模型 [7] 基于能量的模型 [8] 扩散模型 I, 扩散模型 II…
最新文章