9. 双向队列

在队列中,我们仅能删除头部元素或在尾部添加元素。如下图所示,双向队列(double-ended queue)提供了更高的灵活性,允许在头部和尾部执行元素的添加或删除操作。

9.1 双向队列常用操作

双向队列的常用操作如下表所示,具体的方法名称需要根据所使用的编程语言来确定。

 同样地,我们可以直接使用编程语言中已实现的双向队列类:

/* 初始化双向队列 */
deque<int> deque;

/* 元素入队 */
deque.push_back(2);   // 添加至队尾
deque.push_back(5);
deque.push_back(4);
deque.push_front(3);  // 添加至队首
deque.push_front(1);

/* 访问元素 */
int front = deque.front(); // 队首元素
int back = deque.back();   // 队尾元素

/* 元素出队 */
deque.pop_front();  // 队首元素出队
deque.pop_back();   // 队尾元素出队

/* 获取双向队列的长度 */
int size = deque.size();

/* 判断双向队列是否为空 */
bool empty = deque.empty();

9.2 双向队列实现

双向队列的实现与队列类似,可以选择链表或数组作为底层数据结构。

9.2.1 基于双向链表的实现 

回顾上一节内容,我们使用普通单向链表来实现队列,因为它可以方便地删除头节点(对应出队操作)和在尾节点后添加新节点(对应入队操作)。

对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用“双向链表”作为双向队列的底层数据结构。

如下图所示,我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。

 

 

实现代码如下所示:

/* 双向链表节点 */
struct DoublyListNode {
    int val;              // 节点值
    DoublyListNode *next; // 后继节点指针
    DoublyListNode *prev; // 前驱节点指针
    DoublyListNode(int val) : val(val), prev(nullptr), next(nullptr) {
    }
};

/* 基于双向链表实现的双向队列 */
class LinkedListDeque {
  private:
    DoublyListNode *front, *rear; // 头节点 front ,尾节点 rear
    int queSize = 0;              // 双向队列的长度

  public:
    /* 构造方法 */
    LinkedListDeque() : front(nullptr), rear(nullptr) {
    }

    /* 析构方法 */
    ~LinkedListDeque() {
        // 遍历链表删除节点,释放内存
        DoublyListNode *pre, *cur = front;
        while (cur != nullptr) {
            pre = cur;
            cur = cur->next;
            delete pre;
        }
    }

    /* 获取双向队列的长度 */
    int size() {
        return queSize;
    }

    /* 判断双向队列是否为空 */
    bool isEmpty() {
        return size() == 0;
    }

    /* 入队操作 */
    void push(int num, bool isFront) {
        DoublyListNode *node = new DoublyListNode(num);
        // 若链表为空,则令 front 和 rear 都指向 node
        if (isEmpty())
            front = rear = node;
        // 队首入队操作
        else if (isFront) {
            // 将 node 添加至链表头部
            front->prev = node;
            node->next = front;
            front = node; // 更新头节点
        // 队尾入队操作
        } else {
            // 将 node 添加至链表尾部
            rear->next = node;
            node->prev = rear;
            rear = node; // 更新尾节点
        }
        queSize++; // 更新队列长度
    }

    /* 队首入队 */
    void pushFirst(int num) {
        push(num, true);
    }

    /* 队尾入队 */
    void pushLast(int num) {
        push(num, false);
    }

    /* 出队操作 */
    int pop(bool isFront) {
        if (isEmpty())
            throw out_of_range("队列为空");
        int val;
        // 队首出队操作
        if (isFront) {
            val = front->val; // 暂存头节点值
            // 删除头节点
            DoublyListNode *fNext = front->next;
            if (fNext != nullptr) {
                fNext->prev = nullptr;
                front->next = nullptr;
                delete front;
            }
            front = fNext; // 更新头节点
        // 队尾出队操作
        } else {
            val = rear->val; // 暂存尾节点值
            // 删除尾节点
            DoublyListNode *rPrev = rear->prev;
            if (rPrev != nullptr) {
                rPrev->next = nullptr;
                rear->prev = nullptr;
                delete rear;
            }
            rear = rPrev; // 更新尾节点
        }
        queSize--; // 更新队列长度
        return val;
    }

    /* 队首出队 */
    int popFirst() {
        return pop(true);
    }

    /* 队尾出队 */
    int popLast() {
        return pop(false);
    }

    /* 访问队首元素 */
    int peekFirst() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return front->val;
    }

    /* 访问队尾元素 */
    int peekLast() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return rear->val;
    }

    /* 返回数组用于打印 */
    vector<int> toVector() {
        DoublyListNode *node = front;
        vector<int> res(size());
        for (int i = 0; i < res.size(); i++) {
            res[i] = node->val;
            node = node->next;
        }
        return res;
    }
};

9.2.2 基于数组的实现

如下图所示,与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。

 

 

在队列的实现基础上,仅需增加“队首入队”和“队尾出队”的方法:

/* 基于环形数组实现的双向队列 */
class ArrayDeque {
  private:
    vector<int> nums; // 用于存储双向队列元素的数组
    int front;        // 队首指针,指向队首元素
    int queSize;      // 双向队列长度

  public:
    /* 构造方法 */
    ArrayDeque(int capacity) {
        nums.resize(capacity);
        front = queSize = 0;
    }

    /* 获取双向队列的容量 */
    int capacity() {
        return nums.size();
    }

    /* 获取双向队列的长度 */
    int size() {
        return queSize;
    }

    /* 判断双向队列是否为空 */
    bool isEmpty() {
        return queSize == 0;
    }

    /* 计算环形数组索引 */
    int index(int i) {
        // 通过取余操作实现数组首尾相连
        // 当 i 越过数组尾部后,回到头部
        // 当 i 越过数组头部后,回到尾部
        return (i + capacity()) % capacity();
    }

    /* 队首入队 */
    void pushFirst(int num) {
        if (queSize == capacity()) {
            cout << "双向队列已满" << endl;
            return;
        }
        // 队首指针向左移动一位
        // 通过取余操作,实现 front 越过数组头部后回到尾部
        front = index(front - 1);
        // 将 num 添加至队首
        nums[front] = num;
        queSize++;
    }

    /* 队尾入队 */
    void pushLast(int num) {
        if (queSize == capacity()) {
            cout << "双向队列已满" << endl;
            return;
        }
        // 计算尾指针,指向队尾索引 + 1
        int rear = index(front + queSize);
        // 将 num 添加至队尾
        nums[rear] = num;
        queSize++;
    }

    /* 队首出队 */
    int popFirst() {
        int num = peekFirst();
        // 队首指针向后移动一位
        front = index(front + 1);
        queSize--;
        return num;
    }

    /* 队尾出队 */
    int popLast() {
        int num = peekLast();
        queSize--;
        return num;
    }

    /* 访问队首元素 */
    int peekFirst() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        return nums[front];
    }

    /* 访问队尾元素 */
    int peekLast() {
        if (isEmpty())
            throw out_of_range("双向队列为空");
        // 计算尾元素索引
        int last = index(front + queSize - 1);
        return nums[last];
    }

    /* 返回数组用于打印 */
    vector<int> toVector() {
        // 仅转换有效长度范围内的列表元素
        vector<int> res(queSize);
        for (int i = 0, j = front; i < queSize; i++, j++) {
            res[i] = nums[index(j)];
        }
        return res;
    }
};

9.3 双向队列应用

双向队列兼具栈与队列的逻辑,因此它可以实现这两者的所有应用场景,同时提供更高的自由度

我们知道,软件的“撤销”功能通常使用栈来实现:系统将每次更改操作 push 到栈中,然后通过 pop 实现撤销。然而,考虑到系统资源的限制,软件通常会限制撤销的步数(例如仅允许保存 \(50\) 步)。当栈的长度超过 \(50\) 时,软件需要在栈底(队首)执行删除操作。但栈无法实现该功能,此时就需要使用双向队列来替代栈。请注意,“撤销”的核心逻辑仍然遵循栈的先入后出原则,只是双向队列能够更加灵活地实现一些额外逻辑。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/214618.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu 22.04安装mysql-server 8.0.34(使用bundle.tar)

《Ubuntu 20.04 使用mysql-server_8.0.31-1ubuntu20.04_amd64.deb-bundle.tar安装MySQL 8.0.31》是我以前写的博客。 https://downloads.mysql.com/archives/community/是社区版的官网&#xff0c;可以选择版本下载。 sudo wget -c https://downloads.mysql.com/archives/ge…

express搭建后台node接口

在前端的学习中我们使用express来开发接口结合mysql&#xff0c;然后使用可视化的数据库工具来操作数据&#xff0c; web框架是express 文档是jsdoc swagger 数据库模型是sequelize 部署使用PM2来上服务器&#xff0c; 打包你也可以结合webpack配置target node状态 当然你也可以…

自动驾驶学习笔记(十四)——感知算法

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 感知算法 开发过程 测试和评价 前言…

006、简单页面-列表页面

之——Grid&List 杂谈 数据列表的使用。 在我们常用的手机应用中&#xff0c;经常会见到一些数据列表&#xff0c;如设置页面、通讯录、商品列表等。 ​ 正文 1.列表组件 列表中都包含一系列相同宽度的列表项&#xff0c;连续、多行呈现同类数据&#xff0c;例如图片和文本…

idea报错——Access denied for user ‘root‘@‘localhost‘ (using password: YES)

项目场景&#xff1a; 使用idea启动SpringBoot项目报错&#xff0c;可以根据提示看到是数据库的原因&#xff0c;显示使用了密码&#xff0c;具体报错信息如下&#xff1a; 解决方案&#xff1a; 第一步&#xff1a;先去配置文件里面查看连接MySQL的url是否正确&#xff0c;如果…

Linux 上的容器技术

容器实现封闭的环境主要要靠两种技术&#xff0c;一种是看起来是隔离的技术&#xff0c;称为 namespace&#xff08;命名空间&#xff09;。在每个 namespace 中的应用看到的&#xff0c;都是不同的 IP 地址、用户空间、进程 ID 等。另一种是用起来是隔离的技术&#xff0c;称为…

Python标准库:datetime模块【侯小啾python领航班系列(二十五)】

Python标准库:datetime模块【侯小啾python领航班系列(二十五)】 大家好,我是博主侯小啾, 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ…

字符串经典基础面试题

关卡名 字符串经典基础面试题 我会了✔️ 内容 1.理解字符串反转的处理方法 ✔️ 2.熟练掌握回文串的判断方法 ✔️ 3.掌握字符串中搜索第一个唯一字符的方法 ✔️ 4.掌握判断是否互为字符串重排的处理技巧 ✔️ 1 反转的问题 我们知道反转是链表的一个重要考点&#xf…

STM32F407-14.3.10-01PWM模式

PWM 模式 脉冲宽度调制模式可以生成一个信号&#xff0c;该信号频率由 TIMx_ARR⑩ 寄存器值决定&#xff0c;其占空比由 TIMx_CCRx⑤ 寄存器值决定。 通过向 TIMx_CCMRx 寄存器中的 OCxM⑰ 位写入 110 &#xff08;PWM 模式 1&#xff09;或 111 &#xff08;PWM 模式 2&#…

Linux(13):例行性工作排程

例行性工程 听谓的排程是将工作安排执行的流程之意。 Linux 排程就是透过 crontab 与 at 这两个东西。 两种工作排程的方式&#xff1a; 一种是例行性的&#xff0c;就是每隔一定的周期要来办的事项&#xff1b; 一种是突发性的&#xff0c;就是这次做完以后就没有的那一种&a…

一、CSharp_Basic:什么是.Net平台?什么是.Net FrameWork?什么是C#?

什么是.Net平台&#xff1f; 在了解C#之前&#xff0c;我们应该先了解一下什么是.Net平台。 .Net的诞生 2000年&#xff0c;这时候的微软凭借其Windows操作系统庞大的用户基数&#xff0c;推出了.Net1.0的标准。 也就是实现在Windows平台上面开发和应用程序的概念。我们可以简…

CCFCSP试题编号:202006-2试题名称:稀疏向量

不断匹配相乘累加就好了 #include<iostream> #include<vector> #include <utility> using namespace std;int main() {int n;int a, b;long long result0; // 使用 long long cin >> n >> a >> b;vector<pair<int, int> > u…

什么是类和对象?this引用是什么?Java如何初始化对象?

目录 一.什么是面向对象 面向过程&#xff1a; 面向对象&#xff1a; 二.类与对象 类的概念 类的定义格式 对象的概念 注意 关于类和对象的说明 三.this引用 为什么要有this引用&#xff1f; 什么是this引用 this引用的特性 四.对象的构造及初始化 构造方法 特…

51单片机应用从零开始(九)·数组

目录 1. 用字符型数组控制 P0 口 8 位 LED 流水点亮 2. 用 P0 口显示字符串常量 1. 用字符型数组控制 P0 口 8 位 LED 流水点亮 C语言中的字符型数组是一种数据类型&#xff0c;它是一个由字符组成的序列&#xff0c;以空字符\0结尾。在声明字符型数组时&#xff0c;需要指…

CnosDB FDW:打通一扇通往PostgreSQL世界的大门

本文档提供了下载、安装和使用 CnosDB FDW 的简要说明。请根据您的实际需求和环境对文档进行调整。 概述 CnosDB FDW 是一个用于在 PostgreSQL 数据库中访问 CnosDB 数据库的外部数据包装器&#xff08;Foreign Data Wrapper&#xff09;。它提供了在 PostgreSQL 中查询 CnosD…

【USRP】5G / 6G 原型系统 5g / 6G prototype system

面向5G/6G科研应用 USRP专门用于5G/6G产品的原型开发与验证。该系统可以在实验室搭建一个真实的5G 网络&#xff0c;基于开源的代码&#xff0c;专为科研用户设计。 软件无线电架构&#xff0c;构建真实5G移动通信系统 X410 采用了目前流行的异构式系统&#xff0c;融合了FP…

思维模型 赫洛克效应

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。及时反馈&#xff0c;激发动力。 1 赫洛克效应的应用 1.1 赫洛克效应在管理中的应用 美国惠普公司是一家全球知名的科技公司&#xff0c;该公司非常注重员工的激励和认可。在惠普公司&…

[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

文章目录 一、完整代码二、论文解读2.1 注意力机制2.2 绝对位置编码2.3 相对位置编码2.4 旋转位置编码Long-term decayAdaption for linear attention 2.5 模型效果 三、过程实现四、整体总结 论文&#xff1a;ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING …

操作系统·存储器管理

根据冯诺依曼原理&#xff0c;程序必须先存储在内存中&#xff0c;才可以执行。 在多道程序并发执行的系统存储器管理非常重要。 5.1 存储器管理的功能 5.1.1 主存分配与回收 要完成内存的分配和回收工作&#xff0c;要求设计者选择和确定几种策略和结构&#xff1a; 1.调入…

基于springboot + vue体育馆使用预约平台

qq&#xff08;2829419543&#xff09;获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;springboot 前端&#xff1a;采用vue技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xf…
最新文章