C++-详解智能指针

 

目录

​编辑

一.什么是智能指针

        1.RAII

        2.智能智能指针

二.为什么需要智能指针

        1.内存泄漏

               a. 什么是内存泄漏,内存泄漏的危害

                b.内存泄漏分类

                c.如何检测内存泄漏

                d.如何避免内存泄漏

                总结一下:

        2.为什么需要智能指针以及智能指针的原理

三.智能指针的使用

        1.C++98中的败笔智能指针auto_ptr

        2.C++11中的智能指针

                a.unique_ptr 不可拷贝的智能指针

                b.share_ptr 可以拷贝的智能指针        

        c.weak_ptr 用来解决share_ptr中的循环引用问题


 

一.什么是智能指针

        1.RAII
                RAII(Resource Acquisition Is Initialization )是一种 利用对象生命周期来控制程序资源 (如内存、文件句柄、网络连接、互斥量等等)的简单技术。在对象构造时获取资源 ,接着控制对资源的访问使之在对象的生命周期内始终保持有效, 最后在 对象析构的时候释放资源 。借此,我们实际上把管理一份资源的责任托管给了一个对象。这种做法有两大好处:
                不需要显式地释放资源。
                采用这种方式,对象所需的资源在其生命期内始终保持有效
        2.智能智能指针

                 在程序中创建一个专门管理在程序中申请资源的类,通过这个类管理我们申请的资源。

二.为什么需要智能指针

        1.内存泄漏
               a. 什么是内存泄漏,内存泄漏的危害
        什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内 存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对 该段内存的控制,因而造成了内存的浪费。
        内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现 内存泄漏会导致响应越来越慢,最终卡死。
        
 
void MemoryLeaks()
{
   // 1.内存申请了忘记释放
  int* p1 = (int*)malloc(sizeof(int));
  int* p2 = new int;
  
  // 2.异常安全问题
  int* p3 = new int[10];
  
  Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
  
  delete[] p3;
}
                b.内存泄漏分类
                        C/C++程序中一般我们关心两种方面的内存泄漏:
                        堆内存泄漏(Heap leak)
                                堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free 或者 delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak
                        系统资源泄漏
                                指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定。
                c.如何检测内存泄漏
                        在linux下内存泄漏检测: linux 下几款内存泄漏检测工具
                        在windows下使用第三方工具: VLD 工具说明
                        其他工具: 内存泄漏工具比较
                d.如何避免内存泄漏
                        1. 工程前期良好的设计规范,养成良好的编码规范,申请的内存空间记着匹配的去释放。ps:这个理想状态。但是如果碰上异常时,就算注意释放了,还是可能会出问题。需要下一条智能指针来管理才有保证。
                        2. 采用RAII思想或者智能指针来管理资源                     
                        3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。
                        4. 出问题了使用内存泄漏工具检测。ps:不过很多工具都不够靠谱,或者收费昂贵。
                总结一下:
                        内存泄漏非常常见,解决方案分为两种:1、事前预防型。如智能指针等。2 、事后查错型。如泄 漏检测工具
        2.为什么需要智能指针以及智能指针的原理
                
                  先来看这样一段代码:
        
#include <iostream>
#include <string>

using namespace std;

int main(void)
{
	string* str_ptr = new string;

	func();

	delete str_ptr;
	return 0;
}

                对于上面的代码,关于str_ptr中申请的堆中的资源,此时我们需要手动释放,那么当程序没有问题的运行完成时,此时程序完成对我们申请的资源的释放,但是如果在中间的func()函数发生错误抛异常了,会改变我们程序的执行顺序,此时我们释放代码就不会被执行了。

                此时我们就会想如果有一个可以自己知道自己什么该死的空间就好了。

                此时就有人提出智能指针的概念了。

                通过一个类来管理我们申请的资源,该类的析构函数在类对象出作用域的时候会自动被调用,会自动的清理我们的资源。

template<class T>
class SmartPtr {
public:
    SmartPtr(T* ptr = nullptr)
       : _ptr(ptr)
   {}
    ~SmartPtr()
   {
        if(_ptr)
            delete _ptr;
   }
    
private:
    T* _ptr;
};
int div()
{
   int a, b;
   cin >> a >> b;
   if (b == 0)
   throw invalid_argument("除0错误");
   return a / b;
}
void Func()
{
   ShardPtr<int> sp1(new int);
   ShardPtr<int> sp2(new int);
   cout << div() << endl;
}

int main()
{
    try {
 Func();
   }
    catch(const exception& e)
   {
        cout<<e.what()<<endl;
   }
 return 0;
}

三.智能指针的使用

        
        1.C++98中的败笔智能指针auto_ptr
#include <memory>
#include <iostream>


using namespace std;

class A
{
public:
	A(int a)
		:_a(a)
	{
		cout << "A()" << endl;
	}

	~A()
	{
		cout << "~A()" << endl;
	}

private:

	int _a;
};

int main(void)
{
	auto_ptr<A> ap1(new A(1));
	auto_ptr<A> ap2(new A(2));
	auto_ptr<A> ap3;

	ap3 = ap1;

	return 0;
}


                此时我们发现这个auto_ptr在进行拷贝的时候是转移资源的使用权,此后我们在使用ap1

这个智能指针的时候就无法使用了。

 

        2.C++11中的智能指针
                a.unique_ptr 不可拷贝的智能指针

                        

                   类的对象不可以进行拷贝的两个方法:

                          将该类的拷贝构造函数私有化。

                          unique_ptr(unique_ptr<T>& up) = delete; 已删除该函数。

template<class T>
	class unique_ptr
	{
	public:
		// RAII
		// 像指针一样
		unique_ptr(T* ptr)
			:_ptr(ptr)
		{}

		~unique_ptr()
		{
			cout << "delete:" << _ptr << endl;
			delete _ptr;
		}

		T& operator*()
		{
			return *_ptr;
		}

		T* operator->()
		{
			return _ptr;
		}

		// ap3(ap1)
		// 管理权转移
		// 防拷贝
		unique_ptr(unique_ptr<T>& ap) = delete;
		unique_ptr<T>& operator=(unique_ptr<T>& ap) = delete;
	private:
		T* _ptr;
	};
                b.share_ptr 可以拷贝的智能指针        

                          

 

template<class T>
	class shared_ptr
	{
	public:
		// RAII
		// 像指针一样
		shared_ptr(T* ptr = nullptr)
			:_ptr(ptr)
			,_pcount(new int(1))
		{}

		// function<void(T*)> _del;
		template<class D>
		shared_ptr(T* ptr, D del)
			:_ptr(ptr)
			, _pcount(new int(1))
			, _del(del)
		{}

		~shared_ptr()
		{
			if (--(*_pcount) == 0)
			{
				cout << "delete:" << _ptr << endl;
				//delete _ptr;
				_del(_ptr);

				delete _pcount;
			}
		}

		T& operator*()
		{
			return *_ptr;
		}

		T* operator->()
		{
			return _ptr;
		}

		// sp3(sp1)
		shared_ptr(const shared_ptr<T>& sp)
			:_ptr(sp._ptr)
			,_pcount(sp._pcount)
		{
			++(*_pcount);
		}

		// sp1 = sp5
		// sp6 = sp6
		// sp4 = sp5
		shared_ptr<T>& operator=(const shared_ptr<T>& sp)
		{
			if (_ptr == sp._ptr)
				return *this;

			if (--(*_pcount) == 0)
			{
				delete _ptr;
				delete _pcount;
			}

			_ptr = sp._ptr;
			_pcount = sp._pcount;
			++(*_pcount);

			return *this;
		}

		int use_count() const
		{
			return *_pcount;
		}

		T* get() const
		{
			return _ptr;
		}

	private:
		T* _ptr;
		int* _pcount;

		function<void(T*)> _del = [](T* ptr) {delete ptr; };
	};
        c.weak_ptr 用来解决share_ptr中的循环引用问题

                

                

 

template<class T>
	class weak_ptr
	{
	public:
		weak_ptr()
			:_ptr(nullptr)
		{}

		weak_ptr(const shared_ptr<T>& sp)
			:_ptr(sp.get())
		{}

		weak_ptr<T>& operator=(const shared_ptr<T>& sp)
		{
			_ptr = sp.get();
			return *this;
		}

		T& operator*()
		{
			return *_ptr;
		}

		T* operator->()
		{
			return _ptr;
		}
	private:
		T* _ptr;
	};

四.定制删除器

        上面的代码没法自动释放new到的多个空间

                

           解决方法 :
                

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/218047.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker使用笔记

1.使用docker创建pytorch深度环境 1.1 创建docker环境 docker run -it --nameDCASE --gpus all --shm-size 64G pytorch/pytorch /bin/bash #这里可以根据需要将 pytorch/pytorch 镜像更改为自己需要的镜像&#xff0c;如果不知道自己主机含有哪几个镜像&#xff0c;可以使用…

Linux lshw命令(lshw指令)(List Hardware,获取底层硬件信息)(查询硬件信息)

文章目录 Linux lshw命令&#xff1a;一个全面的硬件信息查询工具介绍安装lshw使用lshwlshw的选项和参数lshw文档英文文档中文文档 命令示例lshw -c network -sanitize查看系统网络硬件信息&#xff0c;并移除敏感项&#xff08;显示为REMOVED&#xff09; lshw与其他命令的对比…

手搭手浅学状态管理VueX

https://vuex.vuejs.org/zh/guide/ 每一个 Vuex 应用的核心就是 store&#xff08;仓库&#xff09;。“store”基本上就是一个容器&#xff0c;它包含着你的应用中大部分的状态 (state)。Vuex 和单纯的全局对象有以下两点不同&#xff1a; Vuex 的状态存储是响应式的。当 Vu…

25、矩阵乘法的本质

本来一直在介绍卷积,为什么突然出现一个矩阵乘法呢? 因为如果我们将卷积运算拆开,其中最核心的部分便是一个矩阵乘法。所以,卷积算法可以看做是带滑窗的矩阵乘法。 这里的滑窗,就是卷积运算中所示意的动图那样,所以,我们把滑窗固定,不看卷积核滑动这个动作,那么就是…

二维码智慧门牌管理系统升级:地址审核管理方案

文章目录 前言一、智能化门牌管理系统二、地址审核管理方案 前言 在当今信息化社会&#xff0c;标准地址管理是确保数据准确性和运营顺畅的重要一环。为了更好地管理地址信息&#xff0c;二维码智慧门牌管理系统升级了一项新的地址审核管理方案&#xff0c;旨在提高地址管理的…

人工智能学习6(贝叶斯实现简单的评论情感分析)

编译工具PyCharm 文章目录 编译工具PyCharm 文本分析与表示实现方式&#xff1a;文本表示方法文本相似度计算LDA主题模型 朴素贝叶斯算法应用&#xff1a;评论情感分析&#xff0c;工具评论分析是好评还是差评获取数据加载停用词内容标准化&#xff08;将每一句话划分成一个个的…

ESP32 freeRTOS笔记 参数传递、任务优先级

一、四种参数传递方式 1.1 整数传递 使用 (void *) 任何类型传递参数&#xff0c;通过地址传递给任务。 #include <stdio.h> #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h"void myTask(void *pvP…

简单了解HTTP报文及示例

简单了解HTTP报文及示例 HTTP报文请求报文响应报文通用首部字段Cache-ControlConnectionDate 请求首部字段AcceptAccept-CharsetAccept-EncodingAccept-LanguageHostIf-MatchIf-Modified-SinceIf-None-MatchRefererUser-Agent 响应首部字段Accpet-RangesAgeLocationServer 实体…

8.HTTP工作原理

HTTP是什么 HTTP工作原理 HTTP协议的请求类型和响应状态码 总结 1.HTTP是什么 HTTP超文本传输协议就是在一个网络中上传下载文件的一套规则 2.HTTP工作原理 HTTP超文本传输协议的本质是TCP通信&#xff0c;链接—>请求—>响应—>断开 3.HTTP协议的请求类型和响应状…

stm32L071KB单片机字节对齐问题

字节对齐问题由来很关键 字节对齐问题由来 字节对齐问题由来 在移植同事代码的时候发现到一个赋值变量的地方就会出现死机&#xff0c;进入hardfault,怎么也找不不到原因&#xff0c;最后没办法去了github https://github.com/armink/CmBacktrace/blob/master/README_ZH.md Cm…

AWS攻略——使用中转网关(Transit Gateway)连接同区域(Region)VPC

文章目录 环境准备创建VPC 配置中转网关给每个VPC创建Transit Gateway专属挂载子网创建中转网关创建中转网关挂载修改VPC的路由 验证创建业务Private子网创建可被外网访问的环境测试子网连通性Public子网到Private子网Private子网到Private子网 知识点参考资料 在《AWS攻略——…

Hadoop的介绍与安装

1 Hadoop的简介 Hadoop是一个开源的大数据框架&#xff0c;是一个分布式计算的解决方案。Hadoop是由java语言编写的&#xff0c;在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架&#xff0c;其核心部件是HDFS与MapReduce。 HDFS是一个分布式文件系统&#x…

新华三数字大赛复赛知识点 AAA

AAA的概念和架构&#xff0c;RADIUS和TACASS的原理和配置 AAA是网络访问控制的一种安全管理框架&#xff0c;他决定哪些的用户能够访问网络&#xff0c;以及用户能够访问哪些资源或者得到哪些服务。 第一个A&#xff1a;认证 认证用来识别访问网络的用户的身份&#xff0c;判断…

Proteus仿真--基于1602LCD与DS18B20设计的温度报警器

本文介绍基于1602LCD与DS18B20设计的温度报警器设计&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 其中温度传感器选用DS18B20器件&#xff0c;主要用于获取温度数据并上传&#xff0c;温度显示1602LCD液晶显示器&#xff0c;报警模块选用蜂鸣器&#…

【电机控制】PMSM无感foc控制(五)相电流检测及重构 — 单电阻采样

0. 前言 相电流采样再FOC控制中是一个关键的环节&#xff0c;鉴于成本和易用性&#xff0c;目前应用较多的相电流采样方式是分流电阻采样&#xff0c;包括单电阻、双电阻以及三电阻采样法。 本章节先讲解单电阻采样相电流的检测及重构技术&#xff0c;在下一章讲解双电阻和三电…

linux 应用开发笔记---【标准I/O库/文件属性及目录】

一&#xff0c;什么是标准I/O库 标准c库当中用于文件I/O操作相关的一套库函数&#xff0c;实用标准I/O需要包含头文件 二&#xff0c;文件I/O和标准I/O之间的区别 1.标准I/O是库函数&#xff0c;而文件I/O是系统调用 2.标准I/O是对文件I/O的封装 3.标准I/O相对于文件I/O具有更…

spark sql基于RBO的优化

前言 这里只对RBO优化进行简单的讲解。讲解RBO之前必须对spark sql的执行计划做一个简单的介绍。 这个里讲解的不是很清楚&#xff0c;需要结合具体的执行计划来进行查看 1、执行计划 在spark sql的执行计划中&#xff0c;执行计划分为两大类&#xff0c;即逻辑执行计划、物…

基于Docker构建Python开发环境

1. Dockerfile dockerfile所在目录结构 FROM python:3.8 WORKDIR /leo RUN apt-get install -y wget RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo Asia/Shanghai >/etc/timezone # ssh免密登录 COPY id_rsa.pub /leo RUN mkdir ~/.s…

【Unity动画】状态机中层的融合原理与用法详解

1. 状态机概念介绍 在Unity中&#xff0c;动画状态机&#xff08;Animator State Machine&#xff09;是一种强大的工具&#xff0c;用于控制游戏对象的动画行为。动画状态机由多个动画状态Animation和过渡条件Transition、层组成&#xff01;而层&#xff08;Layers&#xff…

IDEA构建springBoot新项目时JDK只有17和21,无法选择JDK8解决方案

今天创建springboot新项目时&#xff0c;发现IDEA里JDK选项只有17和21&#xff0c;无法选择本机的JDK8&#xff0c;网上查资料后发现是springboot2.7于11.24号后停止维护&#xff0c;基于2.7和java8的spring Initializ官方不再维护&#xff0c;解决方案是在server URL栏&#x…
最新文章