【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

    • 基本概念
        • 时间判别
        • 费歇判别
        • 贝叶斯判别
    • 习题10.3
      • 1. 题目要求
      • 2.解题过程
      • 3.程序
      • 4.结果
    • 习题10.6(1)
      • 1. 题目要求
      • 2.解题过程——对应分析
      • 3.程序
      • 4.结果
    • 习题10.6(2)
      • 1. 题目要求
      • 2.解题过程——R型因子分析
      • 3.程序
      • 4.结果
    • 习题10.6(3)
      • 1. 题目要求
      • 2.解题过程——聚类分析
      • 3.程序
      • 4.结果

本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。

如果这篇文章对你有帮助,欢迎点赞与收藏~
在这里插入图片描述

基本概念

判别分析是一种统计方法,它根据所研究的个体的观测指标来推断该个体所属类型。在自然科学和社会科学的研究中经常会碰到这种统计问题。例如,质找矿中要根据某异常点的地质结构、化探和物探的各项指标来判断该异常点属于哪种矿化类型;医生要根据某人的各项化验指标的结果来判断属于什么病症;调查某地区的土生产率、劳动生产率、人均收入、费用水平、农村工业比例指标,确定该地区属于哪种经济类型区等。

判别分析的目的是对已知分类的数据建立由数值指标构成的分类规则,然后把这样的规则应用到未知分类的样本去分类。例如,我们有了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标发现两类人的区别,把这种区别表示为一个判别公式,然后对怀疑患胃炎的人就可以根据其化验指标用判别公式诊断。

判别分析的方法按照判别的组数来区分,可以分为两组判别分析和多组判别分析。判别分析中,根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。

时间判别

时间判别是一种判别分析方法,它是根据时间序列的特征来判断时间序列所属的类别。时间序列是指按时间顺序排列的一组数据,它是一种重要的数据类型,广泛应用于金融、经济、气象、环境、医学等领域。时间判别的方法有很多,例如,基于时间序列的自回归模型、移动平均模型、ARMA模型等。

费歇判别

Fisher判别是一种线性判别方法,它是根据样本的特征向量来判断样本所属的类别。Fisher判别的基本思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。

贝叶斯判别

贝叶斯判别是一种概率判别方法,它是根据贝叶斯定理来判断样本所属的类别。贝叶斯判别的基本思想是,对于给定的样本,计算它属于每个类别的后验概率,然后将样本判给后验概率最大的那个类别。贝叶斯判别的方法有很多,例如,朴素贝叶斯分类、高斯混合模型等。

习题10.3

1. 题目要求

image-20230531202409425

image-20230531202422992

2.解题过程

解:

先将数据标准化,记第 i i i 个评价对象的第 j j j 个评价指标值为 a i j , i = 1 , 2 , . . . 25 ; j = 1 , 2 , . . . 7 a_{ij},i=1,2,...25;j=1,2,...7 aij,i=1,2,...25;j=1,2,...7 ,将 a i j a_{ij} aij 标准化为 a ~ i j \widetilde{a}_{ij} a ij
a ~ i j = a i j − μ j s j \widetilde{a}_{ij}=\frac{a_{ij}-\mu_j}{s_j} a ij=sjaijμj
式中:
μ j = 1 25 ∑ i = 1 25 a i j \mu_j=\frac{1}{25}\sum_{i=1}^{25}a_{ij} μj=251i=125aij

s j = 1 25 − 1 ∑ i = 1 25 ( a i j − μ j ) 2 s_j=\sqrt{\frac{1}{25-1}\sum_{i=1}^{25}(a_{ij}-\mu_j)^2} sj=2511i=125(aijμj)2

接下来计算相关系数矩阵 R \mathbf{R} R :
R = ( r i j ) 7 × 7 \mathbf{R}=(r_{ij})_{7\times7} R=(rij)7×7

r i j = ∑ k = 1 25 a ~ k i ⋅ a ~ k j , i , j = 1 , 2 , . . . , 7 r_{ij}=\frac{\sum_{k=1}^{25}}{\widetilde{a}_{ki}\cdot\widetilde{a}_{kj}},i,j=1,2,...,7 rij=a kia kjk=125,i,j=1,2,...,7

式中 r i i = 1 , r j i = r i j , r i j r_{ii}=1,r_{ji}=r{ij},r_{ij} rii=1,rji=rij,rij 是第 i i i 指标和第 j j j 指标的相关系数。

计算初等载荷矩阵,首先算出相关矩阵 R \mathbf{R} R 的特征值 λ 1 ≥ λ 2 ≥ . . . ≥ λ 7 \lambda_1\geq\lambda_2\geq...\geq\lambda_7 λ1λ2...λ7,以及应的特征向量 u 1 , u 2 , . . . , u 7 \mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_7 u1,u2,...,u7,则初等载荷矩阵为:
Λ 1 = [ λ 1 u 1 , λ 1 u 2 , . . . , λ 1 u 7 ] \mathbf{\Lambda}_1=[\sqrt{\lambda_1}\mathbf{u}_1,\sqrt{\lambda_1}\mathbf{u}_2,...,\sqrt{\lambda_1}\mathbf{u}_7] Λ1=[λ1 u1,λ1 u2,...,λ1 u7]
计算得出前三个特征值的贡献率达到了 98 % 98\% 98% ,选择三个主因子,对提取的因子载荷矩阵进行旋转,得到矩阵 Λ 2 = Λ 1 ( 3 ) T \mathbf{\Lambda}_2=\mathbf{\Lambda}^{(3)}_1\mathbf{T} Λ2=Λ1(3)T ,

Λ 1 \mathbf{\Lambda}_1 Λ1的前三列, T \mathbf{T} T为正交矩阵,构造因子模型:
{ x ~ 1 = α 11 F ~ 1 + α 12 F ~ 2 + α 13 F ~ 3 ⋮ x ~ 7 = α 71 F ~ 1 + α 72 F ~ 2 + α 73 F ~ 3 \begin{align*} \begin{cases} \widetilde{x}_1=\alpha_{11}\widetilde{F}_1+\alpha_{12}\widetilde{F}_2+\alpha_{13}\widetilde{F}_3 \\ \vdots\\ \widetilde{x}_7=\alpha_{71}\widetilde{F}_1+\alpha_{72}\widetilde{F}_2+\alpha_{73}\widetilde{F}_3 \end{cases} \end{align*} x 1=α11F 1+α12F 2+α13F 3x 7=α71F 1+α72F 2+α73F 3
最终,得到了三个因子,第一个因子是 x 1 x_1 x1 ,第二个因子是 x 5 x_5 x5 ,第三个因子是 x 2 x_2 x2

3.程序

求解的MATLAB程序如下:

clc, clear

% 给定的原始数据矩阵
dd = [3.76, 3.66, 0.54, 5.28, 9.77, 13.74, 4.78; ...
    8.59, 4.99, 1.34, 10.02, 7.5, 10.16, 2.13; ...
    6.22, 6.14, 4.52, 9.84, 2.17, 2.73, 1.09; ...
    7.57, 7.28, 7.07, 12.66, 1.79, 2.1, 0.82; ...
    9.03, 7.08, 2.59, 11.76, 4.54, 6.22, 1.28; ...
    5.51, 3.98, 1.3, 6.92, 5.33, 7.3, 2.4; ...
    3.27, 0.62, 0.44, 3.36, 7.63, 8.84, 8.39; ...
    8.74, 7, 3.31, 11.68, 3.53, 4.76, 1.12; ...
    9.64, 9.49, 1.03, 13.57, 13.13, 18.52, 2.35; ...
    9.73, 1.33, 1, 9.87, 9.87, 11.06, 3.7; ...
    8.59, 2.98, 1.17, 9.17, 7.85, 9.91, 2.62; ...
    7.12, 5.49, 3.68, 9.72, 2.64, 3.43, 1.19; ...
    4.69, 3.01, 2.17, 5.98, 2.76, 3.55, 2.01; ...
    5.51, 1.34, 1.27, 5.81, 4.57, 5.38, 3.43; ...
    1.66, 1.61, 1.57, 2.8, 1.78, 2.09, 3.72; ...
    5.9, 5.76, 1.55, 8.84, 5.4, 7.5, 1.97; ...
    9.84, 9.27, 1.51, 13.6, 9.02, 12.67, 1.75; ...
    8.39, 4.92, 2.54, 10.05, 3.96, 5.24, 1.43; ...
    4.94, 4.38, 1.03, 6.68, 6.49, 9.06, 2.81; ...
    7.23, 2.3, 1.77, 7.79, 4.39, 5.37, 2.27; ...
    9.46, 7.31, 1.04, 12, 11.58, 16.18, 2.42; ...
    9.55, 5.35, 4.25, 11.74, 2.77, 3.51, 1.05; ...
    4.94, 4.52, 4.5, 8.07, 1.79, 2.1, 1.29; ...
    8.21, 3.08, 2.42, 9.1, 3.75, 4.66, 1.72; ...
    9.41, 6.44, 5.11, 12.5, 2.45, 3.1, 0.91];

% 标准化数据(Z-score标准化)
stdd = zscore(dd);

% 计算标准化数据的相关系数矩阵
r = corrcoef(stdd);

% 使用PCA对相关系数矩阵进行主成分分析,获取特征向量(vec1)、特征值(val)和贡献率(con)
[vec1, val, con] = pcacov(r);

% 计算符号矩阵f1,其大小与vec1一致,元素值均为vec1所有元素的和的符号
f1 = repmat(sign(sum(vec1)), size(vec1, 1), 1);

% 将特征向量(vec1)与符号矩阵(f1)相乘,得到新的特征向量矩阵(vec2)
vec2 = vec1 .* f1;

% 计算矩阵f2,其大小与vec2一致,元素值均为val中的特征值的平方根
f2 = repmat(sqrt(val)', size(vec2, 1), 1);

% 将vec2与f2相乘,得到最终的载荷矩阵(a)
a = vec2 .* f2;

% 设定保留的主成分数目
num = 3;

% 保留前num个主成分
am = a(:, [1:num]);

% 使用varimax方法对主成分进行旋转,获得旋转后的载荷矩阵(b)以及得分矩阵(t)
[b, t] = rotatefactors(am, 'Method', 'varimax');

% 将未保留的主成分载荷也加入旋转后的载荷矩阵,得到旋转后的完整载荷矩阵(bt)
bt = [b, a(:, [num + 1:end])];

% 计算每个变量在各个主成分上的载荷的平方和,得到公共度(degree)
degree = sum(b.^2, 2);

% 计算每个主成分的总的贡献率(contr)
contr = sum(bt.^2);

% 计算被保留的主成分的累计贡献率(rate)
rate = contr(1:num) / sum(contr);

% 计算因子分析的系数矩阵(coef)
coef = inv(r) * b;

4.结果

image-20230601000137991

得到的因子分析表如下:

image-20230531203257585

得到了三个因子,第一个因子是 x 1 x_1 x1 ,第二个因子是 x 5 x_5 x5 ,第三个因子是 x 2 x_2 x2

习题10.6(1)

1. 题目要求

在这里插入图片描述

2.解题过程——对应分析

解:

分别用 i = 1 , … , 16 i=1,\dots,16 i=1,,16 表示,以 a i j a_{ij} aij 表示第 i 个地区第 j 个指标变量 x j x_j xj 的取值。

记:
A = ( a i j ) 16 × 6 \mathbf{A}=(a_{ij})_{16\times6} A=(aij)16×6
记:
a i ⋅ = ∑ j = 1 6 a i j , a ⋅ j = ∑ i = 1 16 a i j a_{i\cdot}=\sum_{j=1}^{6}a_{ij},a_{\cdot j}=\sum_{i=1}^{16}a_{ij} ai=j=16aij,aj=i=116aij
首先把 A \mathbf{A} A 化为规格化的“概率”矩阵 P \mathbf{P} P , 记 P = ( p i j ) 16 × 6 \mathbf{P}=(p_{ij})_{16\times6} P=(pij)16×6 ,其中 p i j = a i j / T p_{ij}=a_{ij}/\mathbf{T} pij=aij/T T = ∑ i = 1 16 ∑ j = 1 6 a i j \mathbf{T}=\sum_{i=1}^{16}\sum_{j=1}^{6}a_{ij} T=i=116j=16aij。再对数据进行对应变换,令 B = ( b i j ) 16 × 6 \mathbf{B}=(b_{ij})_{16\times6} B=(bij)16×6 ,其中:
b i j = p i j − p i ⋅ p ⋅ j p i ⋅ p ⋅ j = a i j − a i ⋅ a ⋅ j / T a i ⋅ a ⋅ j , i = 1 , 2 , … , 16 , j = 1 , 2 , … , 6. b_{ij}=\frac{p_{ij}-p_{i\cdot}p_{\cdot j}}{\sqrt{p_{i\cdot}p_{\cdot j}}} = \frac{a_{ij}-a_{i\cdot}a_{\cdot j}/\mathbf{T}}{\sqrt{a_{i\cdot}a_{\cdot j}}}, i=1,2,\dots, 16,j=1,2,\dots,6. bij=pipj pijpipj=aiaj aijaiaj/T,i=1,2,,16,j=1,2,,6.
B \mathbf{B} B 进行奇异值分解, B = U Λ V T \mathbf{B}=\mathbf{U}\varLambda \mathbf{V}^{\mathbf{T}} B=UΛVT,其中 U \mathbf{U} U 16 × 16 16\times 16 16×16 正交矩阵, V \mathbf{V} V 6 × 6 6\times6 6×6 正交矩阵, Λ = [ Λ m 0 0 0 ] \varLambda =\begin{bmatrix} \varLambda_m &0\\ 0&0 \end{bmatrix} Λ=[Λm000],这里 Λ m = d i a g ( d 1 , … , d m ) \varLambda_m=diag(d_1,\dots,d_m) Λm=diag(d1,,dm) ,其中 d i ( i = 1 , 2 , … , m ) d_i(i=1,2,\dots,m) di(i=1,2,,m) B \mathbf{B} B 的奇异值。

U = [ U 1 ⋮ U 2 ] , V = [ V 1 ⋮ V 2 ] \mathbf{U}=[\mathbf{U_1} \vdots \mathbf{U_2}],\mathbf{V}=[\mathbf{V_1} \vdots \mathbf{V_2}] U=[U1U2],V=[V1V2] ,其中 U 1 \mathbf{U_1} U1 16 × m 16\times m 16×m 的列正交矩阵, V 1 \mathbf{V_1} V1 6 × m 6\times m 6×m 的列正交矩阵,则 B \mathbf{B} B 的奇异值分解式等价于 B = U 1 Λ V 1 T \mathbf{B}=\mathbf{U_1}\varLambda\mathbf{V_1}^T B=U1ΛV1T

D r = d i a g ( p 1 ⋅ , p 2 ⋅ , … , p 16 ⋅ ) , D c = d i a g ( p ⋅ 1 , p ⋅ 2 , … , p ⋅ 6 ) \mathbf{D_r}=diag(p_{1\cdot},p_{2\cdot},\dots,p_{16\cdot}),\mathbf{D_c}=diag(p_{\cdot1},p_{\cdot2},\dots,p_{\cdot6}) Dr=diag(p1,p2,,p16),Dc=diag(p1,p2,,p6) ,其中 p i ⋅ = ∑ j = 1 6 p i j p_{i\cdot}=\sum_{j=1}^{6}p_{ij} pi=j=16pij p ⋅ j = ∑ i = 1 16 p i j p_{\cdot j}=\sum_{i=1}^{16}p_{ij} pj=i=116pij。则列轮廓的坐标为 F = D c − 1 / 2 V 1 Λ m \mathbf{F}=\mathbf{D}_{c}^{-1/2}\mathbf{V_1}\varLambda_m F=Dc1/2V1Λm ,行轮廓的坐标为 G = D r − 1 / 2 V 1 Λ m \mathbf{G}=\mathbf{D}_{r}^{-1/2}\mathbf{V_1}\varLambda_m G=Dr1/2V1Λm 。最后通过贡献率的比较确定需要截取的维数,形成对应分析图。

计算 B T B \mathbf{B^T}\mathbf{B} BTB 的特征值,惯量,表示相应维数对各类别的解释量,最大维数 m = min ⁡ 16 − 1 , 6 − 1 m=\min{16-1,6-1} m=min161,61 ,本例最多可以产生5个维数。从下表可看出,第一维数的解释量达 77.4% ,前两个维数的解释度已达92.1%。

维数奇异值惯量贡献率累积贡献率
10.1898930.0360590.7737640.773764
20.0828310.0068610.1472240.920988
30.0471380.0022220.0476180.968669
40.031130.0009690.0207950.989464
50.0221590.0004910.0105361

行坐标

北京天津河北山西内蒙古辽宁
第一维-0.07905-0.06783-0.263540.4577660.07715-0.13567
第二维-0.03540.138818-0.10045-0.057150.156316-0.08455
吉林黑龙江上海江苏浙江安徽
第一维-0.27126-0.197570.3868090.0869550.079122-0.14212
第二维-0.000740.045985-0.07833-0.04222-0.01969-0.14225
福建江西山东河南
第一维-0.17469-0.188590.069823-0.1462
第二维-0.11317-0.15270.1003180.032858

列坐标

x1x2x3x4x5x6
第一维-0.07905-0.06783-0.263540.4577660.07715-0.13567
第二维-0.03540.138818-0.10045-0.057150.156316-0.08455

在下图中,给出16个地区和6个指标在相同坐标系上绘制的散布图。

在这里插入图片描述

从图中可以看出,地区和指标点可以分为两类,

第一类包括指标点 x 4 , x 5 x_4,x_5 x4,x5 ,地区点为北京、天津、河北、上海、江苏、浙江、山东;

第二类包括指标点 x 1 , x 2 , x 3 , x 6 x_1,x_2,x_3,x_6 x1,x2,x3,x6 ,地区点为其余地区。

3.程序

求解的MATLAB程序如下:

clc, clear

% 原始数据,其中包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算原始数据的总和
totalSum = sum(sum(originalData));

% 计算原始数据的比例
ratioData = originalData / totalSum;

% 计算行和列的比例
rowRatio = sum(ratioData, 2);
columnRatio = sum(ratioData);

% 计算行剖面数据
Row_prifile = originalData ./ repmat(sum(originalData, 2), 1, size(originalData, 2));

% 计算B(B为对应分析的基础矩阵)
B = (ratioData - rowRatio * columnRatio) ./ sqrt(rowRatio*columnRatio);

% 对B矩阵进行奇异值分解,得到U,S,V矩阵
[U, S, V] = svd(B, 'econ');

% 对V矩阵列求和并根据其符号调整权重
W1 = sign(repmat(sum(V), size(V, 1), 1));

% 对U矩阵列求和并根据其符号调整权重
W2 = sign(repmat(sum(V), size(U, 1), 1));

% 应用权重调整V和U矩阵
V_adjusted = V .* W1;
U_adjusted = U .* W2;

% 计算lambda(特征值的平方)
lambda = diag(S).^2;

% 计算卡方统计量
chi2Square = totalSum * (lambda);

% 计算总的卡方统计量
totalChi2Square = sum(chi2Square);

% 计算贡献率
contributionRate = lambda / sum(lambda);

% 计算累计贡献率
cumulativeRate = cumsum(contributionRate);

% 计算行轮廓坐标
beta = diag(rowRatio.^(-1 / 2)) * U_adjusted;
G = beta * S

% 计算列轮廓坐标
alpha = diag(columnRatio.^(-1 / 2)) * V_adjusted;
F = alpha * S

% 计算样本点的个数
numOfSample = size(G, 1);

% 计算坐标的取值范围
range = minmax(G(:, [1, 2])');

% 画图略

4.结果

image-20231213134106477

详见上文分析过程,地区和指标点可以分为两类,

第一类包括指标点 x 4 , x 5 x_4,x_5 x4,x5 ,地区点为北京、天津、河北、上海、江苏、浙江、山东;

第二类包括指标点 x 1 , x 2 , x 3 , x 6 x_1,x_2,x_3,x_6 x1,x2,x3,x6 ,地区点为其余地区。

习题10.6(2)

1. 题目要求

同上。

2.解题过程——R型因子分析

解:

对数据进行标准化处理。

计算变量间的相关系数得出相关矩阵 R \mathbf{R} R ,然后计算初等载荷矩阵 Λ 1 \mathbf{\Lambda_1} Λ1

计算得到特征根与各因子的贡献如下表所示。

valuex1x2x3x4x5x6
特征值3.558421.3162520.6082390.3733830.1071780.036527
贡献率59.3070121.9375410.137326.2230521.7862950.608786
累积贡献率59.3070181.2445491.3818797.6049299.39121100

选择 m ( m ≤ 6 ) m(m\leq6) m(m6) 个主因子,构造因子模型:
{ x ~ 1 = α 11 F ~ 1 + α 12 F ~ 2 + α 13 F ~ 3 ⋮ x ~ 7 = α 71 F ~ 1 + α 72 F ~ 2 + α 73 F ~ 3 \begin{align*} \begin{cases} \widetilde{x}_1=\alpha_{11}\widetilde{F}_1+\alpha_{12}\widetilde{F}_2+\alpha_{13}\widetilde{F}_3 \\ \vdots\\ \widetilde{x}_7=\alpha_{71}\widetilde{F}_1+\alpha_{72}\widetilde{F}_2+\alpha_{73}\widetilde{F}_3 \end{cases}\end{align*} x 1=α11F 1+α12F 2+α13F 3x 7=α71F 1+α72F 2+α73F 3
求得因子载荷等估计。

最终,通过表格,可以看出,得到了3个因子,第一个因子是穿住用因子,第二个因子是燃料因子,第3个因子是文化因子。

第(1)问中得到 x 4 , x 5 x_4,x_5 x4,x5 是一类变量,这里得到 x 2 , x 4 , x 5 x_2,x_4,x_5 x2,x4,x5 是一类变量,略有差异。

3.程序

求解的MATLAB程序如下:

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 数据标准化
standardizedData = zscore(originalData);

% 计算相关性矩阵
correlationMatrix = corrcoef(standardizedData);

% 使用主成分分析方法对相关性矩阵进行处理,得到特征向量、特征值和贡献率
[eigenvectors, eigenvalues, contribution] = pcacov(correlationMatrix);

% 计算累积贡献率
cumulativeContribution = cumsum(contribution);

% 根据特征向量的符号进行调整
adjustedSigns = repmat(sign(sum(eigenvectors)), size(eigenvectors, 1), 1);
adjustedEigenvectors = eigenvectors .* adjustedSigns;

% 根据特征值进行缩放
scaledFactors = repmat(sqrt(eigenvalues)', size(adjustedEigenvectors, 1), 1);
scaledEigenvectors = adjustedEigenvectors .* scaledFactors;

% 计算贡献率
contribution1 = sum(scaledEigenvectors.^2);

% 选择的因子数量
factorNum = 3;

% 根据选择的因子数量得到对应的因子
selectedFactors = scaledEigenvectors(:, [1:factorNum]);

% 使用方差最大法进行因子旋转
[rotatedFactors, factorMatrix] = rotatefactors(selectedFactors, 'method', 'varimax')

% 合并旋转后的因子和其他因子
mergedFactors = [rotatedFactors, scaledEigenvectors(:, [factorNum + 1:end])];

% 计算因子载荷量
factorLoads = sum(rotatedFactors.^2, 2)

% 计算贡献率
contribution2 = sum(mergedFactors.^2)

% 计算每个因子的贡献率
contributionRate = contribution2(1:factorNum) / sum(contribution2);

% 计算因子得分系数矩阵
factorScoreCoefficients = inv(correlationMatrix) * rotatedFactors;

4.结果

image-20231213134123724

求得因子载荷等估计如下表所示。

image-20231213134131196

可以看出,得到了3个因子,第一个因子是穿住用因子,第二个因子是燃料因子,第3个因子是文化因子。

第(1)问中得到 x 4 , x 5 x_4,x_5 x4,x5 是一类变量,这里得到 x 2 , x 4 , x 5 x_2,x_4,x_5 x2,x4,x5 是一类变量,略有差异。

习题10.6(3)

1. 题目要求

同上。

2.解题过程——聚类分析

解:

首先计算变量间的相关系数。用两变量 x j x_j xj x k x_k xk的相关系数作为它们的相似性度量,即 x j x_j xj x k x_k xk的相似系数为
r j k = ∑ i = 1 16 ( a i j − μ j ) ( a i k − μ k ) [ ∑ i = 1 16 ( a i j − μ j ) 2 ∑ i = 1 16 ( a i k − μ k ) 2 ] 1 / 2 , j , k = 1 , … , 6. r_{jk} = \frac{\sum_{i=1}^{16}(a_{ij}-\mu_{j})(a_{ik}-\mu_k)} {[\sum_{i=1}^{16}(a_{ij}-\mu_{j})^2\sum_{i=1}^{16}(a_{ik}-\mu_k)^2]^{1/2}},j,k=1,\dots,6. rjk=[i=116(aijμj)2i=116(aikμk)2]1/2i=116(aijμj)(aikμk),j,k=1,,6.
然后计算6个变量两两之间的距离,构造距离矩阵。

接着使用最短距离法来测量类与类之间的距离,记类 G p G_{p} Gp G q G_{q} Gq之间的距离:
D ( G p , G q ) = min ⁡ i ∈ G p , k ∈ G q d i k . D(G_p,G_q) = \min_{i\in G_p,k\in G_q }{d_{ik}}. D(Gp,Gq)=iGp,kGqmindik.
变量聚类的结果是变量 x 3 x_3 x3自成一类,其他变量为一类。画出的变量聚类图如下图所示。

image-20231213134144177

最后进行样本点聚类的 Q \mathbf{Q} Q型聚类分析。

计算16个样本点之间的两两马氏距离。

类与类间相似性度量。

画聚类图,并对样本点进行分类。

样本点的聚类结果如下图所示。通过聚类图,可以把地区分成4类,北京自成一类,吉林自成一类,上海自成一类,其他地区为一类。

image-20231213134151846

3.程序

求解的MATLAB程序如下:R型聚类

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算相关性矩阵
correlationMatrix = corrcoef(originalData);

% 计算距离矩阵
distanceMatrix = 1 - abs(correlationMatrix);
distanceMatrix = tril(distanceMatrix);

% 将距离矩阵转为一维向量
distanceVector = nonzeros(distanceMatrix);
distanceVector = distanceVector';

% 使用层次聚类算法进行聚类
linkageCluster = linkage(distanceVector);

% 选择最大聚类数量为2,得到每个样本的类别
clusterLabels = cluster(linkageCluster, 'maxclust', 2);

% 找到属于第一类的样本
index1 = find(clusterLabels == 1); 
index1 = index1'

% 找到属于第二类的样本
index2 = find(clusterLabels == 2); 
index2 = index2'

% 生成树状图
h = dendrogram(linkageCluster);

% 设置树状图的颜色和线条宽度
set(h, 'Color', 'k', 'LineWidth', 1.3)

求解的MATLAB程序如下:Q型聚类

clc, clear 

% 原始数据,包含了16个地区的6项指标
originalData = [190.33, 43.77, 9.73, 60.54, 49.01, 9.04; ...
    135.20, 36.40, 10.47, 44.16, 36.49, 3.94; ...
    95.21, 22.83, 9.30, 22.44, 22.81, 2.80; ...
    104.78, 25.11, 6.40, 9.89, 18.17, 3.25; ...
    128.41, 27.63, 8.94, 12.58, 23.99, 3.27; ...
    145.68, 32.83, 17.79, 27.29, 39.09, 3.47; ...
    159.37, 33.38, 18.37, 11.81, 25.29, 5.22; ...
    116.22, 29.57, 13.24, 13.76, 21.75, 6.04; ...
    221.11, 38.64, 12.53, 115.65, 50.82, 5.89; ...
    144.98, 29.12, 11.67, 42.60, 27.30, 5.74; ...
    169.92, 32.75, 12.72, 47.12, 34.35, 5.00; ...
    153.11, 23.09, 15.62, 23.54, 18.18, 6.39; ...
    144.92, 21.26, 16.96, 19.52, 21.75, 6.73; ...
    140.54, 21.50, 17.64, 19.19, 15.97, 4.94; ...
    115.84, 30.26, 12.20, 33.61, 33.77, 3.85; ...
    101.18, 23.26, 8.46, 20.20, 20.50, 4.30];

% 计算原始数据的协方差
covarianceMatrix = cov(originalData);

% 初始化距离矩阵
distanceMatrix = zeros(size(originalData, 1));

% 计算Q型距离
for j = 1:15
    for i = j+1:16
        distanceMatrix(i,j) = sqrt((originalData(i,:) - originalData(j,:)) * inv(covarianceMatrix) * (originalData(i,:) - originalData(j,:))');
    end
end

% 将距离矩阵转为一维向量
distanceVector = nonzeros(distanceMatrix);
distanceVector = distanceVector';

% 使用层次聚类算法进行聚类
linkageCluster = linkage(distanceVector);

% 生成树状图
dendro = dendrogram(linkageCluster);

% 设置树状图的颜色和线条宽度
set(dendro,'Color','k','LineWidth',1.3)

4.结果

image-20231213134202288

image-20231213134208347

变量 x 3 x_3 x3自成一类,其他变量为一类。

北京自成一类,吉林自成一类,上海自成一类,其他地区为一类。

如果这篇文章对你有帮助,欢迎点赞与收藏~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/240939.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OLED屏幕,如何成为商显主流

OLED屏幕在商显领域的应用逐渐增加,成为商显主流的原因主要有以下几点: 显示效果优异:OLED屏幕具有自发光原理,色彩鲜艳、对比度高、视角广,能够提供更好的视觉体验。在商业展示、广告宣传等场景中,OLED屏幕…

Feign-自定义配置

目录 一、自定义Feign配置 二、修改日志级别 方式一:application配置文件方式 方式二:java代码方式 三、总结 一、自定义Feign配置 二、修改日志级别 配置Feign日志有两种方式 方式一:application配置文件方式 (1&#xff09…

Java服务占用过高CPU排查思路

一、背景说明 如果线上启动的Java服务占用过高的CPU,我们通过top命令是可以查看到的。 那么问题来了,如果通过top命令查看到是因为java服务引起的占用过高的CPU时间,该如何进行详细的排查呢?换句话说就是如何定位问题发生在代码的…

Vue中使用echarts@4.x中国地图及AMap相关API的使用

一、此 demo 实现的基本功能 1.中国地图的显示 2.地图点击下钻的功能 3.地图相关组件的使用,例 tooltip… 二、实现思路 初始使用下载本地的中国 geo 格式的 json 数据来绘制地图,点击某一区划(例:山东省)时&#xff0…

PySpark大数据处理详细教程

欢迎各位数据爱好者!今天,我很高兴与您分享我的最新博客,专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师,还是寻求深入了解大数据技术的专业人士,这里都有丰富的知识和实用的技巧等着您。让我们…

Centos7 配置Git

随笔记录 目录 1, 新建用户 2. 给用户设置密码相关操作 3. 为新用户添加sudo 权限 4. 配置Git 4.1 配置Git 4.2 查看id_ras.pub 5, 登录Git 配置SSH 秘钥 6. Centos7 登录Git 7. clone 指定branch到本地 8. 将新代码复制到指定路径 9. 上传指定代码 …

2023年11月国产数据库大事记-墨天轮

本文为墨天轮社区整理的2023年11月国产数据库大事件和重要产品发布消息。 11月国产数据库大事记 TOP10 11月国产数据库大事记(时间线) 11月1日消息,近日,由金仓数据库支撑的某大型运营商B域一级BOSS枢纽系统顺利升级上线。金仓数…

四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛

四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛 文章目录 四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛C1-比64少的bas - DONEC2-affine - DONEC3-简单的RSA - DONEM1-不要动我的f…

关于String.Format混合$符号格式化引发的问题

之前一个老项目是用string.Format()进行格式化的,.net 4.5之后的版本 引入 $"字符串" 格式化标识符, 如下代码: string barcode "1234567{#0.000}ABCDE";barcode "12345START{0:#000}ABCDE";try{string sFo…

【网络安全技术】电子邮件安全PGP,SMIME

一、PGP(Pretty Good Privacy) PGP是一种邮件加密手段,他在发邮件一方加密,然后发给发送方邮件服务器,发送方邮件服务器再发送给接收方邮件服务器,然后接收方再从接收方邮件服务器pop出来,这整…

vue实现自动打字效果(带光标效果)

代码介绍(其实就是通过字符串截取加定时拼接完成的,我相信有时间都能琢磨出来,来这里就是为了省事) 上vue页面代码: <template><div idApp><h2>{{text}}<span ref"fou" class"fousdis">{{_}}</span></h2></div>…

CentOS 7 部署frp穿透内网

本文将介绍如何在CentOS 7.9上部署frp&#xff0c;并通过示例展示如何配置和测试内网穿透。 文章目录 &#xff08;1&#xff09;引言&#xff08;2&#xff09;准备工作&#xff08;4&#xff09;frps服务器端配置&#xff08;5&#xff09;frpc客户端配置&#xff08;6&#…

工信部举行发布会 数字化产业推动元宇宙发展取得良好成效

据官方消息&#xff0c;工业和信息化部12日举行“发挥国家高新区作用 加快推进新型工业化”新闻发布会。 在数字化建设方面取得了良好的成绩&#xff1a; 一是数字经济加速发展。国家高新区着力推动人工智能、大数据、云计算、区块链和元宇宙等新产业新业态蓬勃发展&#xff…

1688订单详情接口使用指南:含代码实现获取订单信息

一、引言 随着电子商务的飞速发展&#xff0c;越来越多的企业开始通过1688平台进行采购和销售。为了更好地管理订单&#xff0c;提高客户满意度&#xff0c;许多企业选择使用1688订单详情接口来获取订单信息。本文将详细介绍如何使用1688订单详情接口&#xff0c;并提供示例代…

2023 年山东省职业院校技能大赛(高等职业教育) “信息安全管理与评估”样题

2023 年山东省职业院校技能大赛&#xff08;高等职业教育&#xff09; “信息安全管理与评估”样题 目录 任务 1 网络平台搭建&#xff08;50 分&#xff09; 任务 2 网络安全设备配置与防护&#xff08;250 分&#xff09; 模块二 网络安全事件响应、数字取证调查、应用程序安…

Guava的注解处理机制

第1章&#xff1a;引言 Guava不仅仅是一个工具库&#xff0c;它更像是Java程序员的瑞士军刀&#xff0c;提供了一系列强大的功能&#xff0c;从集合操作到函数式编程&#xff0c;再到今天咱们要深入探讨的——注解处理机制。 注解&#xff08;Annotations&#xff09;&#x…

14:00面试,14:08就出来了,问的问题有点变态。。。。。。

从小厂出来&#xff0c;没想到在另一家公司又寄了。 到这家公司开始上班&#xff0c;加班是每天必不可少的&#xff0c;看在钱给的比较多的份上&#xff0c;就不太计较了。没想到5月一纸通知&#xff0c;所有人不准加班&#xff0c;加班费不仅没有了&#xff0c;薪资还要降40%…

uniapp+vite+ts+express踩坑总结

1 关于引入express包报 import express from "express"; ^^^^^^ SyntaxError: Cannot use import statement outside a module的问题。 解决方案&#xff1a; 在package.json中添加type&#xff1a;“module”选项 2 Response is a type and must be imported …

Visio中如何在字母上打出上波浪线

1. 如何打出这样的带有波浪线的文字 我们在使用visio中&#xff0c;有时候遇见了特殊符号&#xff0c;比如下方这个带有波浪线的X&#xff0c;如何在visio打出这样的带有波浪线的文字&#xff1f; 2. 操作 首先输入你想打上上波浪线的字母&#xff0c;如下图所示 光标一定…

jmeter里如何添加Referer

按照此实例添加即可。 例如&#xff1a;接口
最新文章