Video anomaly detection with spatio-temporal dissociation 论文阅读

Video anomaly detection with spatio-temporal dissociation

  • 摘要
  • 1.介绍
  • 2.相关工作
  • 3. Methods
    • 3.1. Overview
    • 3.2. Spatial autoencoder
    • 3.3. Motion autoencoder
    • 3.4. Variance attention module
    • 3.5. Clustering
    • 3.6. The training objective function
  • 4. Experiments
  • 5. Conclusion
  • 6阅读总结

文章信息:

在这里插入图片描述

发表于:Pattern Recognition(CCF A类)
原文链接:https://www.sciencedirect.com/science/article/pii/S0031320321003940
源代码:https://github.com/ChangYunPeng/VideoAnomalyDetection

摘要

视频中的异常检测仍然是一项具有挑战性的任务,主要由于异常的定义模糊不清以及真实视频数据中视觉场景的复杂性。
与以往利用重建或预测作为辅助任务来学习时间规律的方法不同,本研究探索了一种新颖的卷积自编码器架构,该架构能够分离时空表示,以分别捕捉空间和时间信息,因为异常事件通常在外观和/或运动行为方面与正常情况不同。具体而言,空间自编码器通过学习重构第一个个体帧(FIF)的输入来对外观特征空间中的正常性建模,而时间部分以前四个连续帧作为输入,并以RGB差异作为输出,以有效模拟光流的运动。外观和/或运动行为上的异常事件导致较大的重构误差。
为了提高对快速移动的异常值的检测性能,我们利用基于方差的注意力模块,并将其插入到运动自编码器中以突显移动较大的区域。
此外,我们提出了一种深度K均值聚类策略,强制空间和运动编码器提取紧凑的表示。对一些公开可用的数据集进行的广泛实验证明了我们的方法的有效性,达到了当前最先进的性能水平。
在这里插入图片描述
图1:我们的视频异常检测架构概述。我们将时空信息分解为两个子模块。空间自动编码器 E a E_a Ea D a D_a Da用于重建LIF,而时间自动编码器 E m E_m Em D m D_m Dm用于预测输入连续视频帧的FIF和LIF之间的RGB差。编码器和解码器都由三个ResNet块构成。具体来说,我们在所有块中用LeakyReLU替换ReLU层,对于解码器网络,我们用像素混洗层替换步长卷积层,以逐步提高空间分辨率。为了进一步约束这两个流,我们引入了一种深度K均值聚类策略来提取紧凑表示,表示为紫色区域。在训练阶段,我们根据空间编码器和运动编码器的级联表示与其对应的聚类中心之间的距离,使用深度K均值聚类方法对两个流进行优化。此外,我们开发了一个基于方差的注意力模块,该模块可以在运动自动编码器中自动为视频片段的运动部分分配重要性权重。(有关此图例中颜色参考的解释,读者可参考本文的网络版本。)

1.介绍

在这项工作中,我们将时空信息分解为两个子模块,以在空间和时间特征空间中同时学习规律。给定连续的视频帧,空间自编码器在**第一个个体帧(FIF)**上运行,而运动自编码器在前四个视频帧上运行。
空间自编码器以单个帧外观的形式呈现有关视频中场景和对象的信息,而运动自编码器生成最后视频帧(LIF)和FIF之间的RGB差异,以获取运动信息。然后,我们将来自空间自编码器的重建结果与来自时态自编码器的RGB差异组合起来得到最终预测。
如图1所示,我们的两个子模块可以同时学习外观和运动规律。无论事件在外观特征空间还是运动特征空间中是否不规律,都将产生较大的重建误差。特别是,先前的研究[7,10,11]还利用了双流架构进行异常检测,其运动流主要通过生成或重建相应的光流来学习运动表示。然而,由于光流并非专门为异常检测而设计,因此光流可能不是学习规律的最佳选择[1,12]。此外,光流估计具有很高的计算成本。为了克服这些缺点,我们的运动自编码器以连续的视频帧作为输入,以它们的RGB差异作为输出来学习运动信息[13],其中RGB差异提示可以比光流更快地捕捉运动信息,并且运动自编码器的生成可以很容易地与空间自编码器的重建进行逐像素融合,以进一步帮助异常检测。值得注意的是,监控视频的大部分是静止的,异常值通常与快速移动具有很高的相关性,例如在地铁入口快速奔跑的行人和在人行道上快速驾驶的车辆。因此,我们利用基于方差的注意力模块来自动突出显示具有大运动的图像区域,并在运动编码器的每个块之后附加此注意力模块。此外,类似于先前的工作[14],该工作通过使用K均值算法[15]将正常训练样本聚类成k个簇,我们引入了一种深度K均值聚类策略来强制空间编码器和时态编码器获得更紧凑的数据表示。具体而言,我们使用K均值算法初始化我们的簇中心。

总的来说,我们的工作做出了以下贡献:

  • 我们提出了一种新颖的自编码器架构,以分离时空表示,并在空间特征空间和运动特征空间中学习规律,从而检测视频中的异常事件。
  • 我们设计了一个高效的运动自编码器,它以连续的视频帧作为输入,以RGB差异作为输出,以模仿光流的运动。所提出的方法比基于光流的运动表示学习方法更快,其平均运行时间为每秒32帧,使用一块GPU。
  • 我们利用一个方差注意力模块,自动为视频剪辑的运动部分分配重要性权重,这有助于提高运动自编码器的性能。
  • 我们探索了一种深度K均值聚类策略,以迫使自编码器网络生成紧凑的运动和外观描述符。由于簇仅在正常事件上进行训练,因此簇与异常表示之间的距离比正常模式之间的距离要大得多。重建误差和簇距离一起被用于评估异常情况。

2.相关工作

2.1. 基于自编码器的异常检测
由于现实数据的复杂性和有效标记数据的限制,异常事件检测任务通常在无监督设置下进行,其中训练集仅包含正常事件。大多数基于深度学习的方法使用自编码器[17–20]来提取特征表示,并采用基于重建或基于预测的方法来学习视频序列背后的正常性。基于重建的异常检测方法将给定的视频帧作为输入,通过提取高级特征表示学习以小的重建误差重构正常事件[1]。应用2D卷积自编码器来降低维度并学习时态规律[21–23]。使用相邻帧的时态一致性先验来训练自编码器网络[24]。引入了无标签监督,结合了约束学习和物理领域知识,共同解决了包括对象跟踪和行走人在内的三个计算机视觉任务[5]。使用编码器LSTM提取特征,并应用解码器LSTM进行重建,这种策略在顺序数据建模中被广泛使用。除了基于重建的方法,未来帧预测[3]是一种将异常视为不符合预期事件的替代深度学习方法。这些方法被训练以在正常训练数据集上基于其历史观察来预测未来帧,在测试阶段,通过将预测与期望进行比较来识别异常事件。我们还将自编码器作为骨干网络,并在正常数据集上对其进行训练,以提取通用因子。值得注意的是,我们同时结合了基于重建和基于预测的架构,通过同时重构输入的单个帧以捕捉外观特征,并预测未来帧与第一个输入帧之间的RGB差异来学习正常事件的运动模式。因此,在特征空间中包含不规则因素的异常样本无法准确重构。

2.2. 具有两个流网络的视频任务
为了充分利用视频任务中的空间和时间信息,[25]首次利用了双流网络,即RGB流和光流流,其中通过后期融合将两个流组合用于动作分类[26]。提出了一个带有两个网络分支的时空注意力模块,用于活动识别[8]。共同模拟人群模式的外观和动态,并在建模复杂动态场景中证明了双流架构的有效性。由于异常事件可以通过外观或运动来检测,[7]引入了用于视频异常检测的双流架构。此外,图像补丁和由光流表示的动态运动被用作两个独立网络的输入,分别捕获外观表示和运动表示,然后通过后期融合将这两个流的异常分数进行组合以进行最终评估[11]。利用两个生成器网络学习人群行为的正常模式,其中一个生成器网络接受输入帧以生成光流图像,而另一个生成器网络从光流中重构帧[10]。使用两个处理流,第一个自编码器学习正常事件中的常见空间外观结构,第二个流学习由光流表示的相应运动特征。除了直接以视频帧和光流为输入的方法外,MPEDRNN [27]提取2D人体骨骼轨迹并将这些轨迹馈送到编码器中,然后通过两个交互分支同时重构输入和预测未来,其中每个分支由带有RNN的编码器-解码器组成,以检测监控视频中的异常人类相关事件。然而,对于这些方法,获取光流[28]或轨迹是时间成本较高的。相比之下,我们利用RGB差异策略替代光流来模拟运动信息,这更加高效。具体而言,在训练阶段,我们堆叠除LIF外的所有其他帧,并使用2D CNN作为时态自编码器的骨干来处理连续的视频帧。通过强制运动编码器学习紧凑的运动表示并产生RGB差异,运动自编码器可以有效地学习时态规律和运动一致性。

2.3. 数据表示和数据聚类
许多异常检测方法[29-33]旨在在正常事件中找到“紧凑的描述”。最近,一些基于自动编码器的方法将特征学习和聚类结合在一起[34]。联合训练CNN自动编码器和多项式逻辑回归模型到自动编码器潜在空间。类似地,[35]交替表示学习和聚类,其中使用小批量k-Means作为聚类组件[36]。提出了一种深度嵌入式聚类(DEC)方法,该方法联合更新从预训练的自动编码器初始化的聚类中心和数据点表示。DEC使用经过优化的软分配,通过Kullback-Leibler发散损失来匹配更严格的分配。IDEC[37]和ST-GCAE[38]随后被提出作为DEC[14]的改进。提出了一种基于将训练样本聚类为正态性聚类的监督分类方法[39]。通过将各种模式的正常数据记录到存储器中的各个项目中,利用存储器模块进行异常检测。基于这种架构,并受到[40]思想的启发,我们引入了一个深度K-means聚类,以迫使自动编码器网络生成用于视频异常检测的紧凑特征表示。在训练阶段,我们通过最小化数据表示和聚类中心之间的距离来训练我们的深度K-means聚类。因此,每个聚类中心可以被视为训练数据集中的正常时空模式。在推理阶段,正态样本的表示将更紧密地映射到聚类中心。

3. Methods

3.1. Overview

主要有4个点

3.2. Spatial autoencoder

在这里插入图片描述
这是空间autoencoder,主要是重构视频序列的第一帧,用于重构视频的静态表示(理解为空间信息)。
输入为 x f i f x_{fif} xfif(视频序列第一帧),通过编码器 E a E_a Ea得到描述 Z a Z_a Za, Z a Z_a Za再经过解码器 D a D_a Da得到 x ^ f i f \widehat{x}_{fif} x fif,如下面公式所示:

在这里插入图片描述
这里有个loss,是输入输出的均方误差:
在这里插入图片描述

3.3. Motion autoencoder

Motion autoencoder的结构如图所示:
在这里插入图片描述
输入4张图片,Motion autoencoder的输出为第5帧和第1帧的RGB差异,通过这种方式来表示运动差异,得到运动上的重构。
如公式所示:
在这里插入图片描述在这里插入图片描述
过编码器 E m E_m Em得到特征描述 Z m Z_m Zm, Z m Z_m Zm再经过解码器 D m D_m Dm得到 x ^ d i f f \widehat{x}_{diff} x diff
其中 x ^ d i f f \widehat{x}_{diff} x diff为第5帧和第1帧的RGB差异。
这里的损失函数定义为:
在这里插入图片描述
由两部分组成,前半部分是 x ^ d i f f \widehat{x}_{diff} x diff x d i f f x_{diff} xdiff的均方误差,后半部分是梯度损失。

3.4. Variance attention module

在这里插入图片描述
方差注意力模块如上图所示,个人感觉论文里写的不太好理解,去源码上看了一下主要就是以下步骤:

  • 对输入进行一次卷积操作:
    在这里插入图片描述
    得到图中黄色的特征图,对应公式如下:其中 W g W_g Wg表示卷积, z m i z_m^i zmi表示输入。
    在这里插入图片描述
  • 对每个通道相同位置对应的点求方差,得到通道的空间注意力权重
    在这里插入图片描述
    在这里插入图片描述
  • 最后将注意力和原始输入相乘:
    在这里插入图片描述

3.5. Clustering

对聚类的知识了解较少,只能理解为将两个编码器的输出进行聚类,能得到更好的正常表示。

3.6. The training objective function

损失函数有3个
在这里插入图片描述
分别是静态损失,动态损失和聚类的损失。

4. Experiments

评价指标采用AUC:
在这里插入图片描述

5. Conclusion

在本文中,我们提出了一种新的自动编码器架构,将时空信息分解为两个子模块,以学习空间和时间特征空间中的规律性,并在正常事件中生成紧凑的描述。具体地,
空间自动编码器对第一单独帧(FIF)进行操作,并通过重构输入来提取空间空间中的规则性。
时间自动编码器对连续的视频帧进行处理,通过构造RGB差来学习时间规律。根据捕获的时间规律性和运动一致性,时间自动编码器可以学习预测RGB残差,该残差包含用于异常检测的有用运动信息,非常有效。
此外,我们设计了一个方差注意力模块来突出框架的运动部分。此外,为了有效地学习空间和运动特征空间中的正规性,并获得更紧凑的数据表示,我们通过深度Kmeans聚类方法最小化级联表示与聚类中心之间的距离。我们将空间自动编码器和运动自动编码器的结果相结合,以获得最后一个单独帧(LIF)的预测,并将预测与像素级的聚类距离相融合,以评估异常。在三个具有代表性的数据集上进行的大量实验表明,我们的方法达到了最先进的性能。

6阅读总结

  • 将空间和运动信息结合起来重构正常序列,时间编码器用于重构一帧,运动编码器用于重构最后一帧和第一帧的RGB差,用于代表运动信息,或者叫时间信息;
  • 引入Kmeans聚类算法将空间和运动信息绑定;
  • 设计了一个方差注意力模块。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/241110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Dockerfile创建镜像

Docker镜像的创建 1.基于现有镜像创建 //首先启动一个镜像,在容器里做修改 docker run -itd --name web centos:7 /bin/bash #启动容器docker exec -it web bash #进入容器​ yum install -y epel-release #安装epel源 yum install -y nginx #安装nginx …

共享门店会在未来新零售占据主角吗?

共享门店作为一种创新的商业模式,在未来新零售领域中可能会占据一定的角色,但具体是否会成为主角,还需要根据市场的发展和技术的进步来判断。 首先,共享门店模式通过资源共享、风险共担、客户共享和收益共享等方式,为…

Python 递归及目录遍历

递归调用:一个函数,调用了自身,称为递归调用 递归函数:一个会调用自身的函数 凡是循环能做的事,递归都能做。 目录 递归示例 普通方法实现 递归方式实现 计算分析: 递归遍历目录 引入os 遍历目录 执…

Unity | 渡鸦避难所-2 | 搭建场景并添加碰撞器

1 规范项目结构 上期中在导入一系列的商店资源包后,Assets 目录已经变的混乱不堪 开发过程中,随着资源不断更新,遵循一定的项目结构和设计规范是非常必要的。这可以增加项目的可读性、维护性、扩展性以及提高团队协作效率 这里先做下简单的…

【BigDecimal类—常用API系列】解决java浮点计算精度损失问题

文章目录 Java浮点计算精度损失问题BigDecimal进行精确运算的解决方案 Java浮点计算精度损失问题 BigDecimal它是干什么用的呢?什么是java浮点计算精度损失问题?我们先看一段代码,看这个代码有什么问题?再说BigDeimal这个类是干什…

【机器学习】亚马逊云科技基础知识:以推荐系统为例。你知道机器学习的关键所在么?| 机器学习管道的各个阶段及工作:以Amazon呼叫中心转接问题为例讲解

有的时候,暂时的失利比暂时胜利要好得多。 ————经典网剧《mao pian》,邵半仙儿 🎯作者主页: 追光者♂🔥 🌸个人简介: 💖[1] 计算机专业硕士研究生💖 🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿 🌟[3] 2022年度博客之星人工智能领域TOP

深入了解—C++11特性

目录 一、 C11简介 二、初始化列表 2.1 C98中{}的初始化问题 2.2 内置类型的列表初始化 2.3 自定义类型的列表初始化 2.3.1. 标准库支持单个对象的列表初始化 2.3.2. 多个对象的列表初始化 三、变量类型推导 3.1 为什么需要类型推导 3.2 decltype类型推导 3.2.1. 推…

方法-PC端远程调试分布式训练

本专栏为深度学习的一些技巧,方法和实验测试,偏向于实际应用,后续不断更新,感兴趣童鞋可关,方便后续推送 简介 一些简单的代码我们使用Pycharm本地调试就能运行成功,但在诸如使用GPU进行分布式训练和推断等场景中,由于我们本地的电脑没有GPU或者没有多…

慢SQL的治理经验

其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、慢SQL导致的后果 二、可能导致慢SQL的原因 三、如何发现慢SQL 3.1 JVM Sandbox 四、识别高危SQL 4.1 阿里的重点强制SQL规…

docker容器-compose单机容器编排

yaml文件:是一种标记语言,以竖列的形式展示序列化的数据格式,可读性高 类似于json格式,语法简单 yaml通过缩进来表示数据结构,连续的项目用-减号来表示 yaml文件使用的注意事项 1、大小写敏感 2、通过缩进表示层级…

VUE3语法--toRefs与toRef用法

1、功能概述 ref和reactive能够定义响应式的数据,当我们通过reactive定义了一个对象或者数组数据的时候,如果我们只希望这个对象或者数组中指定的数据响应,其他的不响应。这个时候我们就可以使用toRefs和toRef实现局部数据的响应。 toRefs是…

AntDB数据库致力降本增效的某省高速清分结算实践——优势总结和推广意义

中国正处于数字化转型的关键时期,高速公路正朝着智慧高速的建设迈进。不论是传统的传统高速卡口,诸如“数据采集、数据上传”和“数据处理”的基础建设1.0时代,还是不久将来即将实现的具备“车辆协同智能”、“边缘控制中心”及“智慧高速云控…

vue+element项目中页面多个接口异常,只提示一次异常信息

有时候一个页面会同时调多个接口,但是多个接口异常,需要做提示,那么提示的时候会弹出很多的提示信息,这无疑让体验感降低很多。 所以针对这种情况,我们配合element UI统一做一个异常状态的处理,只能显示一…

MATLAB实现图像变换和滤波

MATLAB实现图像变换和滤波方法对具有不同特征的灰度图像进行处理 图像变换方法包括:DFT及IDFT,DCT及IDCT 图像滤波方法包括低通滤波和高通滤波 图像变换 DFT/IDFT 图像一般是二维的,根据二维离散傅里叶变换公式DFT,可以将图片…

多线程案例-定时器(附完整代码)

定时器是什么 定时器是软件开发中的一个重要组件.类似于一个"闹钟".达到一个设定的时间之后,就执行某个指定好的代码. 定时器是一种实际开发中非常常用的组件. 比如网络通信种,如果对方500ms内没有返回数据,则断开尝试重连. 比如一个Map,希望里面的某个key在3s之后过…

视频播放插件ckplayer

地址:https://www.ckplayer.com/demo.html 效果图

events.out.tfevents文件信息提取

深度学习训练数据有时候是记录在log文件中,文件名类型为events.out.tfevents.xxx.king,当然这些文件可以通过tensorbord工具可视化,这里提供一些events.out.tfevents文件信息提取的方法。 (1)events.out.tfevents多个文件可视化 …

UniGui使用CSSUniTreeMenu滚动条

有些人反应UniTreeMenu当菜单项目比较多的时候会超出但是没有出滚动条,只需要添加如下CSS 老规矩,unitreemeu的layout的componentcls里添加bbtreemenu,然后在css里添加 .bbtreemenu .x-box-item{ overflow-y: auto; } 然后当内容超出后就会…

反射篇笔记

反射的本质:加载类。 把某个类的字节码文件加载到内存中。并允许以变成的方式解剖类中的各种成分(成员方法,变量,构造器)。 例如在使用IDEA时,他的提示,就是利用反射,提前将类中的…
最新文章