竞赛保研 基于Django与深度学习的股票预测系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Django框架
  • 4 数据整理
  • 5 模型准备和训练
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于Django与深度学习的股票预测系统 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

随着经济的发展,我国的股票市场建设正不断加强,社会直接融资正获得重要发展。股票市场行情的涨落与国民经济的发展密切相关。股票作为一种资本融资和投资的工具,是一种资本的代表形式,股票市场可以让上市公司便捷地在国内和国际市场融资。个人投资者、投资机构期望通过技术手段进行投资分析,能够从股票市场获得一定相对高额的投资收益。

2 实现效果

主界面
在这里插入图片描述
详细数据查看
在这里插入图片描述
股票切换
在这里插入图片描述

相关html


DOCTYPE html>



股票预测系统title><br/> {% load static %}<br/>

3 Django框架

Django是一个基于Web的应用框架,由python编写。Web开发的基础是B/S架构,它通过前后端配合,将后台服务器的数据在浏览器上展现给前台用户的应用。Django本身是基于MVC模型,即Model(模型)+View(视图)+
Controller(控制器)设计模式,View模块和Template模块组成了它的视图部分,这种结构使动态的逻辑是剥离于静态页面处理的。
Django框架的Model层本质上是一套ORM系统,封装了大量的数据库操作API,开发人员不需要知道底层的数据库实现就可以对数据库进行增删改查等操作。Django强大的QuerySet设计能够实现非常复杂的数据库查询操作,且性能接近原生SQL语句。Django支持包括PostgreSQL、My
Sql、SQLite、Oracle在内的多种数据库。Django的路由层设计非常简洁,使得将控制层、模型层和页面模板独立开进行开发成为可能。基于Django的Web系统工程结构示意图如图所示。

在这里插入图片描述

从图中可以看到,一个完整的Django工程由数个分应用程序组成,每个分应用程序包括四个部分:

urls路由层 :决定Web系统路由结构,控制页面间的跳转和数据请求路径

在这里插入图片描述

views视图层
:业务层,主要进行逻辑操作和运算,是前端页面模板和后端数据库之间的桥梁。Django框架提供了大量的数据库操作API,开发人员甚至不需要使用SQL语句即可完成大部分的数据库操作。
在这里插入图片描述

models模型层
:Web应用连接底层数据库的关键部分,封装了数据库表结构和实现。开发人员可以在Model层按照Django的指令要求进行建表,无须使用SQL语句或者第三方建表工具进行建表。建表的过程类似于定义变量和抽象编程语言中的类,非常方便。

在这里插入图片描述

templates模板层
:HTML模板文件,后端数据会填充HTML模板,渲染之后返回给前端请求。考虑到项目周期尽可能小,尽快完成平台的搭建,项目决定采用开源的Django框架开发整个系统的Web应用层。

在这里插入图片描述
关键代码


def main():
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE’, ‘ExamOnline.settings’)
try:
from django.core.management import execute_from_command_line
except ImportError as exc:
raise ImportError(
"Couldn’t import Django. Are you sure it’s installed and "
"available on your PYTHONPATH environment variable? Did you "
“forget to activate a virtual environment?”
) from exc
execute_from_command_line(sys.argv)


4 数据整理

对于LSTM来说,至少需要两步整理过程:

  • 归一化
  • 变成3D样本(样本,时间步,特征数)

对于神经网络来说,归一化至关重要。如果缺失,会无法顺利训练和学习,俗称:Train不起来。对于LSTM来说,更为重要,因为LSTM内部包含tanh函数使得输出范围在-1到1之间。这就需要我们将预测值也进行归一化,常见的做法就是直接归一化到0和1之间。

将一般的特征X和目标y变成3D,我这里提供了一个函数,输入为原始的X_train_raw,X_test_raw,y_train_raw,y_test_raw。​n_input
为需要多少步历史数据,n_output为预测多少步未来数据。


def transform_dataset(train_set, test_set, y_train, y_test, n_input, n_output):
all_data = np.vstack((train_set, test_set))
y_set = np.vstack((y_train, y_test))[:,0]
X = np.empty((1, n_input, all_data.shape[1]))
y = np.empty((1, n_output))
for i in range(all_data.shape[0] - n_input - n_output):
X_sample = all_data[i:i + n_input, :]
y_sample = y_set[i + n_input:i + n_input + n_output]
if i == 0:
X[i] = X_sample
y[i] = y_sample
else:
X = np.append(X, np.array([X_sample]), axis=0)
y = np.append(y, np.array([y_sample.T]), axis=0)
train_X = X[:train_set.shape[0] - n_input, :, :]
train_y = y[:train_set.shape[0] - n_input, :]
test_X = X[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :, :]
test_y = y[train_set.shape[0] -
n_input:all_data.shape[0] -
n_input -
n_output, :]
return train_X, train_y, test_X, test_y

5 模型准备和训练

Keras已经包含LSTM
网络层,调用方式和普通的神经网络没有特别大的区别,仅仅需要指定输入数据的shape。这里我们设计一个简单的神经网络,输入层为LSTM,包含20个节点,输出层为普通的Dense,损失函数采用mean_absolute_error。


n_timesteps, n_features, n_outputs = train_X.shape[1], train_X.shape[2], train_y.shape[1]
# create a model
model = Sequential()
model.add(LSTM(10, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
kernel_regularizer=regularizers.l2(0.0),return_sequences=False))
#model.add(LSTM(20, input_shape=(n_timesteps, n_features),kernel_initializer=‘glorot_uniform’,
# kernel_regularizer=regularizers.l2(0.0)))

model.add(Dense(n_outputs,kernel_initializer='glorot_uniform',
                kernel_regularizer=regularizers.l2(0.0)))

model.compile(optimizer='adam', loss='mean_absolute_error')
print(model.summary())

调用fit函数对训练集进行学习。由于时间序列具有很明显的趋势,因此有必要将样本打乱。这里需要说明:我们打乱的是“样本”,不影响每个样本内在的序列关系。LSTM只会根据样本内在的序列关系(时间步)来更新自己的隐状态。


from sklearn.utils import shuffle
train_X,train_y = shuffle(train_X,train_y,random_state=42)
plt.plot(train_y)
# fit the RNN model
history = model.fit(
train_X,
train_y,
epochs=300,
batch_size=512,
validation_split=0.3)
figure = plt.Figure()
plt.plot(history.history[‘loss’],
‘b’,
label=‘Training loss’)
plt.plot(history.history[‘val_loss’],
‘r’,
label=‘Validation loss’)
plt.legend(loc=‘upper right’)
plt.xlabel(‘Epochs’)
plt.show()

查看loss曲线,确保训练已经稳定。
在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/262092.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WMS仓储管理系统的基本架构和功能模块

在数字化时代&#xff0c;WMS仓储管理系统解决方案已经成为了企业物流管理的重要组成部分。WMS仓储管理系统通过先进的信息化技术&#xff0c;实现了对仓库的全面管理&#xff0c;提高了仓库的运营效率&#xff0c;降低了成本。本文将详细解析WMS仓储管理系统的基本架构和功能模…

C#合并多个Word文档(微软官方免费openxml接口)

g /// <summary>/// 合并多个word文档&#xff08;合并到第一文件&#xff09;/// </summary>/// <param name"as_word_paths">word文档完整路径</param>/// <param name"breakNewPage">true(默认值)&#xff0c;合并下一个…

深信服技术认证“SCSA-S”划重点:命令执行漏洞

为帮助大家更加系统化地学习网络安全知识&#xff0c;以及更高效地通过深信服安全服务认证工程师考核&#xff0c;深信服特别推出“SCSA-S认证备考秘笈”共十期内容&#xff0c;“考试重点”内容框架&#xff0c;帮助大家快速get重点知识~ 划重点来啦 *点击图片放大展示 深信服…

深入理解 Spring Boot:核心知识与约定大于配置原则

深入理解 Spring Boot&#xff1a;核心知识与约定大于配置原则 简单说一下为什么要有 Spring Boot&#xff1f; 因为 Spring 的缺点。 虽然 Spring 的组件代码是轻量级的&#xff0c;但它的配置却是重量级的(需要大量 XML 配置) 为了减少配置文件&#xff0c;简化开发 Spri…

【Pytorch】学习记录分享6——PyTorch经典网络 ResNet与手写体识别

【Pytorch】学习记录分享5——PyTorch经典网络 ResNet 1. ResNet &#xff08;残差网络&#xff09;基础知识2. 感受野3. 手写体数字识别3. 0 数据集&#xff08;训练与测试集&#xff09;3. 1 数据加载3. 2 函数实现&#xff1a;3. 3 训练及其测试&#xff1a; 1. ResNet &…

JFreeChart 生成图表,并为图表标注特殊点、添加文本标识框

一、项目场景&#xff1a; Java使用JFreeChart库生成图片&#xff0c;主要场景为将具体的数据 可视化 生成曲线图等的图表。 本篇文章主要针对为数据集生成的图表添加特殊点及其标识框。具体包括两种场景&#xff1a;x轴为 时间戳 类型和普通 数值 类型。&#xff08;y轴都为…

阿里云林立翔:基于阿里云 GPU 的 AIGC 小规模训练优化方案

云布道师 本篇文章围绕生成式 AI 技术栈、生成式 AI 微调训练和性能分析、ECS GPU 实例为生成式 AI 提供算力保障、应用场景案例等相关话题展开。 生成式 AI 技术栈介绍 1、生成式 AI 爆发的历程 在 2022 年的下半年&#xff0c;业界迎来了生成式 AI 的全面爆发&#xff0c…

RAG实战案例:如何基于 LangChain 实现智能检索生成系统

在人工智能领域&#xff0c;如何有效结合大型语言模型&#xff08;LLM&#xff09;的常识性知识与特定的专有数据&#xff0c;一直是业界探索的热点。微调&#xff08;Fine-tuning&#xff09;与检索增强生成&#xff08;Retrieval-Augmented Generation&#xff0c;简称RAG&am…

5. 行为模式 - 备忘录模式

亦称&#xff1a; 快照、Snapshot、Memento 意图 备忘录模式是一种行为设计模式&#xff0c; 允许在不暴露对象实现细节的情况下保存和恢复对象之前的状态。 问题 假如你正在开发一款文字编辑器应用程序。 除了简单的文字编辑功能外&#xff0c; 编辑器中还要有设置文本格式和…

【Docker】基于华为 openEuler 应用 Docker 镜像体积压缩

书接 openEuler 系列文章&#xff08;可以翻看测试系列&#xff09;&#xff0c;本次跟大家说说如何将 Java 包轻量化地构建到 openEuler 镜像中且保持镜像内操作系统是全补丁状态。 之前我们都是使用现成的 jdk 镜像进行构建的&#xff0c;如下图&#xff1a; FROM ibm-seme…

Docker安装(CentOS)+简单使用

Docker安装(CentOS) 一键卸载旧的 sudo yum remove docker* 一行代码(自动安装) 使用官方安装脚本 curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 启动 docker并查看状态 运行镜像 hello-world docker run hello-world 简单使用 使用 docker run …

第八节TypeScript 函数

1、函数的定义 函数就是包裹在花括号中的代码块&#xff0c;前面使用关键字function。 语法&#xff1a; function function_name() {// 执行代码 } 实例&#xff1a; function test() { // 函数定义console.log("我就是创建的名称为test的函数") } 2、调用…

论文阅读——RS DINO

RS DINO: A Novel Panoptic Segmentation Algorithm for High Resolution Remote Sensing Images 基于MASKDINO模型&#xff0c;加了两个模块&#xff1a; BAM&#xff1a;Batch Attention Module 遥感图像切分的时候把一个建筑物整体比如飞机场切分到不同图片中&#xff0c;…

五分钟学完k-means

聚类算法有很多种&#xff0c;K-Means 是聚类算法中的最常用的一种&#xff0c;算法最大的特点是简单&#xff0c;好理解&#xff0c;运算速度快&#xff0c;但是只能应用于连续型的数据&#xff0c;并且一定要在聚类前需要手工指定要分成几类。 K-Means 聚类算法的大致意思就…

Ubuntu18.04、CUDA11.1安装TensorRT

最近想试试推理加速&#xff0c;因为跑的预测有点慢&#xff0c;一开始是打算从数据处理上实现&#xff0c;采用并行数据处理&#xff0c;但是这个有所难度&#xff0c;而且有几张显卡可用&#xff0c;就想着怎么把显卡利用上。而且了解到推理加速后&#xff0c;就先尝试一下看…

1.0.0 IGP高级特性简要介绍(ISIS)

ISIS高级特性 1.LSP快速扩散 ​ 正常情况下&#xff0c;当IS-IS路由器收到其它路由器发来的LSP时&#xff0c;如果此LSP比本地LSDB中相应的LSP要新&#xff0c;则更新LSDB中的LSP&#xff0c;并用一个定时器定期将LSDB内已更新的LSP扩散出去。 IS-IS如何识别LSP的新旧&#x…

[每周一更]-(第35期):为何要用ChatGPT?

为何要用ChatGPT&#xff1f;因为她是工具&#xff0c;而人类需要工具&#xff1b; AI只要没有自主目的性的话就是工具&#xff0c;需要怕的是使用这个工具的人。掌握了提问的艺术&#xff0c;更好利用AI帮助我们完成目标&#xff1b; 最开始2022/12/07 开始注册ChatGPT使用&a…

【C++】开源:libmodbus通信协议库配置使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍libmodbus通信协议库配置使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#x…

PDF控件Spire.PDF for .NET【安全】演示:将加密或解密 PDF 文件

当涉及到在 Internet 上共享机密文档时&#xff0c;PDF 加密是一项至关重要的任务。通过使用强密码加密 PDF 文件&#xff0c;您可以保护文件数据免遭未经授权的人员访问。在某些情况下&#xff0c;可能还需要删除密码才能公开文档。在本文中&#xff0c;您将了解如何使用Spire…

ChatGPT一周年:开源语言大模型的冲击

自2022年末发布后&#xff0c;ChatGPT给人工智能的研究和商业领域带来了巨大变革。通过有监督微调和人类反馈的强化学习&#xff0c;模型可以回答人类问题&#xff0c;并在广泛的任务范围内遵循指令。在获得这一成功之后&#xff0c;人们对LLM的兴趣不断增加&#xff0c;新的LL…
最新文章