Java之Atomic 原子类总结

Java之Atomic 原子类总结

Atomic 原子类介绍

Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。

所以,所谓原子类说简单点就是具有原子/原子操作特征的类。

并发包 java.util.concurrent 的原子类都存放在java.util.concurrent.atomic下,如下图所示。

JUC原子类概览

基本类型原子类

  • AtomicInteger:整型原子类
  • AtomicBoolean:布尔型原子类
  • AtomicLong:长整型原子类
public final int get() //获取当前的值
public final int getAndSet(int newValue)//获取当前的值,并设置新的值
public final int getAndIncrement()//获取当前的值,并自增
public final int getAndDecrement() //获取当前的值,并自减
public final int getAndAdd(int delta) //获取当前的值,并加上预期的值
boolean compareAndSet(int expect, int update) //如果输入的数值等于预期值,则以原子方式将该值设置为输入值(update)
public final void lazySet(int newValue)//最终设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。

AtomicInteger 类使用示例 :

import java.util.concurrent.atomic.AtomicInteger;

public class AtomicIntegerTest {

    public static void main(String[] args) {
        int temvalue = 0;
        AtomicInteger i = new AtomicInteger(0);
        temvalue = i.getAndSet(3);
        System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:0;  i:3
        temvalue = i.getAndIncrement();
        System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:3;  i:4
        temvalue = i.getAndAdd(5);
        System.out.println("temvalue:" + temvalue + ";  i:" + i); //temvalue:4;  i:9
    }

}

基本数据类型原子类的优势

通过一个简单例子带大家看一下基本数据类型原子类的优势

1、多线程环境不使用原子类保证线程安全(基本数据类型)

class Test {
        private volatile int count = 0;
        //若要线程安全执行执行count++,需要加锁
        public synchronized void increment() {
                  count++;
        }

        public int getCount() {
                  return count;
        }
}

2、多线程环境使用原子类保证线程安全(基本数据类型)

class Test2 {
        private AtomicInteger count = new AtomicInteger();

        public void increment() {
                  count.incrementAndGet();
        }
      //使用AtomicInteger之后,不需要加锁,也可以实现线程安全。
       public int getCount() {
                return count.get();
        }
}

AtomicInteger 线程安全原理简单分析

AtomicInteger 类的部分源码:

    // setup to use Unsafe.compareAndSwapInt for updates(更新操作时提供“比较并替换”的作用)
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

AtomicInteger 类主要利用 CAS (compare and swap) + volatile 和 native 方法来保证原子操作,从而避免 synchronized 的高开销,执行效率大为提升。

CAS 的原理是拿期望的值和原本的一个值作比较,如果相同则更新成新的值。UnSafe 类的 objectFieldOffset() 方法是一个本地方法,这个方法是用来拿到“原来的值”的内存地址。另外 value 是一个 volatile 变量,在内存中可见,因此 JVM 可以保证任何时刻任何线程总能拿到该变量的最新值。

数组类型原子类

使用原子的方式更新数组里的某个元素

  • AtomicIntegerArray:整形数组原子类
  • AtomicLongArray:长整形数组原子类
  • AtomicReferenceArray:引用类型数组原子类

上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerArray 为例子来介绍。

AtomicIntegerArray 类常用方法

public final int get(int i) //获取 index=i 位置元素的值
public final int getAndSet(int i, int newValue)//返回 index=i 位置的当前的值,并将其设置为新值:newValue
public final int getAndIncrement(int i)//获取 index=i 位置元素的值,并让该位置的元素自增
public final int getAndDecrement(int i) //获取 index=i 位置元素的值,并让该位置的元素自减
public final int getAndAdd(int i, int delta) //获取 index=i 位置元素的值,并加上预期的值
boolean compareAndSet(int i, int expect, int update) //如果输入的数值等于预期值,则以原子方式将 index=i 位置的元素值设置为输入值(update)
public final void lazySet(int i, int newValue)//最终 将index=i 位置的元素设置为newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。

引用类型原子类

基本类型原子类只能更新一个变量,如果需要原子更新多个变量,需要使用 引用类型原子类。

  • AtomicReference :引用类型原子类
  • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。
    • 解决修改过几次
  • AtomicMarkableReference:原子更新带有标记的引用类型。该类将 boolean 标记与引用关联起来
    • 解决是否修改过,它的定义就是将标记戳简化为true/false,类似于一次性筷子
public class AtomicMarkableReferenceDemo {
    static AtomicMarkableReference markableReference = new AtomicMarkableReference(100, false);

    public static void main(String[] args) {
        new Thread(() -> {
            boolean marked = markableReference.isMarked();
            System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t1	默认标识: false
            try {
                TimeUnit.SECONDS.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            markableReference.compareAndSet(100, 1000, marked, !marked);//t2	默认标识: false

        }, "t1").start();

        new Thread(() -> {
            boolean marked = markableReference.isMarked();
            System.out.println(Thread.currentThread().getName() + "\t" + "默认标识: " + marked);//t2	t2线程CASResult:false
            try {
                TimeUnit.SECONDS.sleep(2);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            boolean b = markableReference.compareAndSet(100, 2000, marked, !marked);
            System.out.println(Thread.currentThread().getName() + "\t" + "t2线程CASResult:" + b);
            System.out.println(Thread.currentThread().getName() + "\t" + markableReference.isMarked());//t2	true
            System.out.println(Thread.currentThread().getName() + "\t" + markableReference.getReference());//t2	1000

        }, "t2").start();
    }
}

对象的属性修改类型原子类

如果需要原子更新某个类里的某个字段时,需要用到对象的属性修改类型原子类。

  • AtomicIntegerFieldUpdater:原子更新整形字段的更新器
  • AtomicLongFieldUpdater:原子更新长整形字段的更新器
  • AtomicReferenceFieldUpdater:原子更新引用类型里的字段的更新器

要想原子地更新对象的属性需要两步。第一步,因为对象的属性修改类型原子类都是抽象类,所以每次使用都必须使用静态方法 newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。第二步,更新的对象属性必须使用 public volatile 修饰符。

上面三个类提供的方法几乎相同,所以我们这里以 AtomicIntegerFieldUpdater为例子来介绍。

AtomicIntegerFieldUpdater 类使用示例 :

import java.util.concurrent.atomic.AtomicIntegerFieldUpdater;

public class AtomicIntegerFieldUpdaterTest {
	public static void main(String[] args) {
		AtomicIntegerFieldUpdater<User> a = AtomicIntegerFieldUpdater.newUpdater(User.class, "age");

		User user = new User("Java", 22);
		System.out.println(a.getAndIncrement(user));// 22
		System.out.println(a.get(user));// 23
	}
}

class User {
	private String name;
	public volatile int age;

	public User(String name, int age) {
		super();
		this.name = name;
		this.age = age;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public int getAge() {
		return age;
	}

	public void setAge(int age) {
		this.age = age;
	}

}

输出结果:

22
23

原子操作增强类原理深度解析

  • DoubleAccumulator:一个或多个变量,它们一起保持运行double使用所提供的功能更新值
  • DoubleAdder:一个或多个变量一起保持初始为零double总和
  • LongAccumulator:一个或多个变量,一起保持使用提供的功能更新运行的值long ,提供了自定义的函数操作
  • LongAdder:一个或多个变量一起维持初始为零long总和(重点),只能用来计算加法,且从0开始计算

常用API

image.png

源码、原理分析

  • 架构

image.png

  • 原理(LongAdder为什么这么快)
    • 如果是JDK8,推荐使用LongAdder对象,比AtomicLong性能更好(减少乐观锁的重试次数)
    • LongAdder是Striped64的子类
    • Striped64的基本结构
  • image.png

image.png

    • cell:是java.util.concurrent.atomic下Striped64的一个内部类
    • LongAdder为什么这么快
      • LongAdder的基本思路就是分散热点,将value值分散到一个Cell数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多,如果要获取真正的long值,只要将各个槽中的变量值累加返回
      • sum()会将所有的Cell数组中的value和base累加作为返回值,核心的思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点
      • 内部有一个base变量,一个Cell[]数组
        • base变量:低并发,直接累加到该变量上
        • Cell[]数组:高并发,累加进各个线程自己的槽Cell[i]中
        • image.png
  • 源码解读深度分析

    • LongAdder在无竞争的情况下,跟AtomicLong一样,对同一个base进行操作,当出现竞争关系时则是采用化整为零分散热点的做法,用空间换时间,用一个数组cells,将一个value值拆分进这个数组cells。多个线程需要同时对value进行操作的时候,可以对线程id进行hash得到hash值,再根据hash值映射到这个数组cells的某个下标,再对该下标所对应的值进行自增操作。当所有线程操作完毕,将数组cells的所有值和base都加起来作为最终结果
    • add(1L)
    • image.png
      • 1 如果Cells表为空,尝试用CAS更新base字段,成功则退出
      • 2 如果Cells表为空,CAS更新base字段失败,出现竞争,uncontended为true,调用longAccumulate(新建数组)
      • 3 如果Cells表非空,但当前线程映射的槽为空,uncontended为true,调用longAccumulate(初始化)
      • 4 如果Cells表非空,且当前线程映射的槽非空,CAS更新Cell的值,成功则返回,否则,uncontended设为false,调用longAccumulate(扩容)
    • longAccumulate

    • image.png

    • sum

    • image.png

      ■ sum()会将所有Cell数组中的value和base累加作为返回值。核心思想就是将之前AtomicLong一个value的更新压力分散到多个value中去,从而降级更新热点。

      ■ sum执行时,并没有限制对base和cells的更新,所以LongAdder不是强一致性的,它是最终一致性的,对cell的读取无法保证是最后一次写入的值,所以在没有并发的场景下,可以获得正确的结果。

    • 使用总结

      • AtomicLong线程安全,可允许一些性能损耗,要求高精度时可使用,保证精度,多个线程对单个热点值value进行了原子操作-----保证精度,性能代码
      • LongAdder当需要在高并发场景下有较好的性能表现,且对值得精确度要求不高时,可以使用,LongAdder时每个线程拥有自己得槽,各个线程一般只对自己槽中得那个值进行CAS操作—保证性能,精度代价
  • 总结

    • AtomicLong
      • 原理:CAS+自旋
      • 场景:低并发下的全局计算,AtomicLong能保证并发情况下计数的准确性,其内部通过CAS来解决并发安全性问题
      • 缺陷:高并发后性能急剧下降----AtomicLong的自旋会成为瓶颈(N个线程CAS操作修改线程的值,每次只有一个成功过,其他N-1失败,失败的不停自旋直至成功,这样大量失败自旋的情况,一下子cpu就打高了)
    • LongAdder
      • 原理:CAS+Base+Cell数组分散-----空间换时间并分散了热点数据
      • 场景:高并发下的全局计算
      • 缺陷:sum求和后还有计算线程修改结果的话,最后结果不够准确

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/270286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

drf知识--05

两个视图基类 # APIView&#xff1a;之前一直在用---》drf提供的最顶层的父类---》以后所有视图类&#xff0c;都继承自它 # GenericAPIView&#xff1a;继承自APIView--》封装 继承APIView序列化类Response写接口 # urls.py--总路由 from django.contrib import admin from dj…

算法基础之最长公共子序列

最长公共子序列 核心思想&#xff1a; 线性dp 集合定义 : f[i][j]存 a[1 ~ i] 和 b[1 ~ j] 的最长公共子序列长度 状态计算&#xff1a; 分为取/不取a[i]/b[j] 共四种情况 其中 中间两种会包含两个都不取的情况(去掉) 但是因为取最大值 有重复也没事用f[i-1][j] 和 f[i][j-1]表…

MyBatis:Generator

MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址&#xff1a;Introduction to MyBatis Generator Generator &#xff0c;一个用于 MyBatis 的代码生成工具&#xff0c;可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件&#xff0c;提高…

案例分析:西门子智能工厂

西门子全球首家原生数字化工厂&#xff0c;以其独特的数字化技术&#xff0c;在虚拟世界中构建了工厂的数字孪生&#xff0c;从而实现了从需求分析、规划设计、施工实施到生产运营全过程的数字化。这一原生数字化工厂的创新之处在于&#xff0c;它开创性地运用了原生数字孪生理…

udp多播/组播那些事

多播与组播 多播&#xff08;multicast&#xff09;和组播&#xff08;groupcast&#xff09;是相同的概念&#xff0c;用于描述在网络中一对多的通信方式。在网络通信中&#xff0c;单播&#xff08;unicast&#xff09;是一对一的通信方式&#xff0c;广播&#xff08;broad…

【C++】const 关键字

想要正确理解const关键字&#xff0c;只需记住一句话&#xff1a; cosnt关键字优先修饰左边&#xff0c;如果左边每东西&#xff0c;就作用于右边。 const int a; 修饰int a 不能改变 const int *a ; int const *a; 修饰int 指针a指向的地址可以改变&#xff0c;但是地址中…

[pyqt5]QSpinBox相关函数

1.QSpinBox简介 QSpinBox是计数器控件&#xff0c;允许用户输入整数&#xff0c;或者通过上下按键递增或者递减&#xff0c;默认调整范围是0-99&#xff0c;每次变化步数1&#xff0c;用户可以自行修改范围和步数&#xff1b; QSpinBox常用方法如下&#xff1a; QSpinBox信号…

找不到msvcr90.dll文件怎么办?msvcr90.dll丢失如何修复?

在日常使用计算机的过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“msvcr90.dll缺失”。那么&#xff0c;msvcr90.dll到底是什么&#xff1f;为什么会出现丢失的情况&#xff1f;本文将为您详细介绍msvcr90.dll的定义、丢失原因以及提供5种不同的解决…

怎么卸载macOS上的爱思助手如何卸载macOS上的logitech g hub,如何卸载顽固macOS应用

1.在App Store里下载Cleaner One Pro &#xff08;注意&#xff0c;不需要订阅付费&#xff01;&#xff01;&#xff01;白嫖基础功能就完全够了&#xff01;&#xff01;&#xff01;&#xff09; 2.运行软件&#xff0c;在左侧目录中选择“应用程序管理”&#xff0c;然后点…

C++_const常成员作用

介绍 常成员是什么 1.常成员关键词为&#xff1a;const 2.常成员有&#xff1a;常成员变量、常成员函数、常成员对象 常成员有什么用 1.常成员变量&#xff1a;用于在程序中定义不可修改内部成员变量的函数 2.常成员函数&#xff1a;只能够访问成员变量&#xff0c;不可以修改成…

智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MA…

C#教程(五):枚举

1、什么是枚举 枚举&#xff08;Enum&#xff09;是一种用于定义命名常量集合的数据类型。它允许开发人员创建一个命名的整数常量集合&#xff0c;这些常量可以在代码中代表特定的值。 2、示例 以下是一个简单的枚举示例&#xff1a; // 定义一个枚举类型 enum DaysOfWeek …

C++ Qt开发:Charts绘制各类图表详解

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍TreeWidget与QCharts的常用方法及灵活运用。 …

深入探讨多模态模型和计算机视觉

近年来&#xff0c;机器学习领域在从图像识别到自然语言处理的不同问题类型上取得了显着进展。然而&#xff0c;这些模型中的大多数都对来自单一模态的数据进行操作&#xff0c;例如图像、文本或语音。相比之下&#xff0c;现实世界的数据通常来自多种模态&#xff0c;例如图像…

基于[Discretized] Torus的全同态加密指引(2)

前序博客有&#xff1a; 基于[Discretized] Torus的全同态加密指引&#xff08;1&#xff09; 5. 基于已加密数据处理 很显然&#xff0c;TLWE加密方案和TGLWE加密方案均具有加法同态性。[GSW13] Gentry–Sahai–Waters 方法使用matrix product来将TLWE加密方案和TGLWE加密方…

算法导论复习(四)主方法的专题

主方法我们要记住的是什么呢&#xff1f;

matlab附加功能管理器安装蓝牙工具箱

由于最近需要做蓝牙仿真方面的东西&#xff0c;需要用到matlab的蓝牙工具箱&#xff0c;根据官网例子输入&#xff1a; commSupportPackageCheck(BLUETOOTH);检测是否包含该工具箱&#xff0c;结果出现&#xff1a; 点击Add-On-Explorer出现&#xff1a; 网上搜索发现这是因为…

验证码服务使用指南

验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录&#xf…

关于Dark Frost 僵尸网络对游戏行业进行DDoS攻击的动态情报

一、基本内容 近期&#xff0c;一种名为Dark Frost 的新型僵尸网络被发现正在对游戏行业发起分布式拒绝服务攻击&#xff08;DDoS)。目标包括游戏公司、游戏服务器托管提供商、在线流媒体甚至和网络信息安全攻击者直接交互的其他游戏社区成员。截至2023年2月&#xff0c;僵尸网…

本地搭建【文档助手】大模型版(LangChain+llama+Streamlit)

概述 本文的文档助手就是&#xff1a;我们上传一个文档&#xff0c;然后在对话框中输入问题&#xff0c;大模型会把问题的答案返回。 安装步骤 先下载代码到本地 LangChain调用llama模型的示例代码&#xff1a;https://github.com/afaqueumer/DocQA&#xff08;代码不是本人…
最新文章