大创项目推荐 深度学习LSTM新冠数据预测

文章目录

  • 0 前言
  • 1 课题简介
  • 2 预测算法
    • 2.1 Logistic回归模型
    • 2.2 基于动力学SEIR模型改进的SEITR模型
    • 2.3 LSTM神经网络模型
  • 3 预测效果
    • 3.1 Logistic回归模型
    • 3.2 SEITR模型
    • 3.3 LSTM神经网络模型
  • 4 结论
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的新冠疫情预测算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题简介

新型冠状病毒肺炎(COVID-19,简称“新冠肺炎”)疫情肆虐全球多个国家,本文采用新冠肺炎的时序历史数据,尝试利用Logistic回归模型、SEITR动力学模型、LSTM神经网络等数学模型预测疫情发展趋势与关键节点,对疫情的规模进行定量分析,对疫情原始基数和有效传播率进行科学和可靠的区间估算并进行不同算法的对比分析,为疫情防控中的分析、指挥和决策提供有效依据和指南。

2 预测算法

学长采用了三种算法对于疫情时序数据进行拟合:

  • Logistic回归模型、
  • SEITR动力学模型、
  • LSTM神经网络。

2.1 Logistic回归模型

Logistic函数或Logistic曲线是一种常见的S形函数,它是皮埃尔·弗朗索瓦·韦吕勒在1844或1845年在研究它与人口增长的关系时命名的。该模型广泛应用于生物繁殖和生长过程、人口增长过程模拟,因此也可以在一定程度上对病毒传播和确诊人数增长过程进行拟合。该函数常用的公式如下:

在这里插入图片描述

其中,a、b、K为皮尔模型的参数,估算这三个参数的方法有两类:一类是先估算出a和K,然后推算b值,如Fisher法;另一类是同时估算出参数a、b、K,如倒数总和法。结合疫情发生的实际场景,y为累计病例人数(例/天);t为时间(天);K、a、b为模型参数。从模型可知K为疫情规模,即累计病例最大值;a、b为控制传染速度的参数。

在这里插入图片描述

Logistic回归模型其算法思想来源于,当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。

其求参过程如下:根据实际统计的数据
y0,设定初始值K,计算y;用y’和t进行线性回归,得到参数a,b;根据K、a、b按上面的公式计算不同时间的预测值,并同步计算预测值与实际值之间的误差平方和;K值由原值加上步长重复计算,直到误差平方和到达最小,即最小二乘法寻优。此时的K值就是要找的最优K值。

2.2 基于动力学SEIR模型改进的SEITR模型

SEIR模型是一种动力学模型,是传染病预测最为常用的模型之一,所研究的传染病有一定的潜伏期,与病人接触过的健康人并不马上患病,而是成为病原体的携带者。与SIR模型相比,SEIR模型进一步考虑了与患者接触过的人中仅一部分具有传染性的因素,使疾病的传播周期更长。该模型将人口样本分为四类,分别为:易感者(S)、潜伏者(E)、传染者(I)和康复者(R),四类人群依次以一定比率进行转化或死亡,之间关系如下图所示:

在这里插入图片描述

其中四类人群具体如下:
1、S 类人群,易感者 (Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;
2、E 类人群,暴露者 (Exposed),指接触过感染者,但暂无能力传染给其他人的人,对潜伏期长的传染病适用;
3、I 类人群,感病者 (Infectious),指染上传染病的人,可以传播给 S 类成员,将其变为 E 类或 I 类成员;
4、R 类人群,康复者 (Recovered),指被隔离或因病愈而具有免疫力的人。如免疫期有限,R 类成员可以重新变为 S 类。
据此:可以得出SEIR模型的传染病动力学微分方程:

在这里插入图片描述

其中,ρ代表传染者单位时间接触易感者数量;β代表每名传染者与易感者接触传染病毒概率;μ代表单位时间死亡几率;ε代表单位时间潜伏者转变为传染者的几率;γ代表单位时间传染者痊愈的几率。

SEITR是基于SEIR模型改进的模型,在原有模型的基础上增加了修正的参数:
“T”:已被感染且正处于接受治疗时期的人群,主要特征表现为已被感染,已过潜伏期,但不会进行传染,且正在被治疗。
同时也将I人群严格定义为被感染,已过潜伏期但未被医院收治无法接受治疗的人群。
δ,表示I变为T的速率,主要受医院接诊速率及收治能力影响,也受发病后及时就医的时间影响。本文采用SEITR模型进行分析;

2.3 LSTM神经网络模型

长短期记忆人工神经网络(Long-Short Term Memory,
LSTM)是一种时间递归神经网络(RNN),由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。LSTM的拓扑图:

在这里插入图片描述

其公式如下:

在这里插入图片描述

3 预测效果

3.1 Logistic回归模型

定义logistic回归函数:

def logistic_increase_function(t,K,P0,r):
    t0=11
    #r 0.05/0.55/0.65
    r = 0.45
    # t:time   t0:initial time    P0:initial_value    K:capacity  r:increase_rate
    exp_value=np.exp(r*(t-t0))
    return (K*exp_value*P0)/(K+(exp_value-1)*P0)

采用国内1月11日到1月27日的累计确诊病例数据作为原始数据,采用最小二乘法拟合逻辑斯蒂曲线,最后经过对逻辑斯蒂模型中R值(增长速率,到达K值的速度)的拟合调整,发现在0.45附近得到的曲线比较贴合我国1月至2月疫情实际情况。
预测参数:

K:capacity P0:initial_value r:increase_rate t:time

[4.63653383e+04 3.69197450e+00 1.00000000e+00]

拟合图像:

在这里插入图片描述

将拟合结果进行推广预测,得到2月9日的预测值在4万左右,与实际情况十分贴近,也证明了模型的一定可靠性;将本模型推广,进行全球范围内典型新冠肺炎爆发国家的疫情拟合与未来疫情预测,同时通过R值的大小,可以反应出该国疫情应对的有效程度。

对美国的当前确诊数据进行拟合:设置t0 = 11,r = 0.05

预测参数:

K:capacity P0:initial_value r:increase_rate t:time  
[2.81881286e+06 7.54187927e+03 1.00000000e+00]

预测结果图像:

在这里插入图片描述

对德国的当前确诊数据进行拟合:设置t0 = 11,r = 0.094

预测参数:

K:capacity P0:initial_value r:increase_rate t:time  
[1.80914161e+05 1.64581650e+02 1.00000000e+00]

预测结果图像:

在这里插入图片描述

3.2 SEITR模型

以下雪学长使用SEITR模型对美国疫情基本得到控制的时间进行预测:

定义SEIR函数:
def funcSEIR(inivalue,_):
 	Y = np.zeros(5)
 	X = inivalue
 	Y[0] = - (beta * X[0] *( X[2]+X[1])) / N				# 易感个体变化
 	Y[1] = (beta * X[0] *( X[2]+X[1])) / N - X[1] / Te 	# 潜伏个体变化
 	Y[2] = X[1] / Te - δ * X[2]								# 感染未住院
 	Y[3] = gamma * X[4]										# 治愈个体变化
 	Y[4] = δ* X[2] - gamma* X[4]								#治疗中个体变化
return Y

根据当前数值预估,可设置初始参数如下:

  • N =330000000 # N为人群总数(美国人口大致为3.3亿)
  • beta = 0.19 # β为传染率系数(美国实际应该略高)
  • gamma = 0.15 # gamma为恢复率系数
  • δ = 0.3 #δ为受到治疗系数(收治率)
  • Te = 14 # Te为疾病潜伏期
  • I_0 = 1 # I_0为感染未住院的初始人数
  • E_0 = 0 # E_0为潜伏者的初始人数
  • R_0 = 0 # R_0为治愈者的初始人数
  • T_0 = 0 #T_0为治疗中的初始人数
  • S_0 = N - I_0 - E_0 - R_0 - T_0 # S_0为易感者的初始人数
  • T = 250 # T为传播时间

拟合结果:

在这里插入图片描述

本次预测得到的结果是今年秋季美国的疫情能够基本得到控制。

3.3 LSTM神经网络模型

这里采用了一个简单的LSTM模型,使用pytorch进行训练,对于世界疫情中确诊数据进行预测:

model = Sequential()
model.add(LSTM(200, activation='relu', input_shape=(n_input, n_features)))
model.add(Dropout(0.15))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
model.fit_generator(generator_conf,epochs=150)

对后一日的结果进行预测并绘图:

在这里插入图片描述
在这里插入图片描述

4 结论

总体来说,三种模型都能对新冠肺炎的时序数据作出一定的拟合,Logistic模型对于疫情控制措施没有较大改变的区域,或者是疫情已经初步得到控制的区域拟合还是效果相对较好的,但对于改变了疫情控制措施的地区来说还是过于粗糙,会造成较大的偏移;

LSTM在短期拟合数据较好,长期来看会有较大的偏移产生;

和其他流行病传染模型相比,SEIR
模型所研究的传染病具有一定的潜伏期,即与感染者接触过的易染者并不马上患病,而是成为病原体的携带者,本身具有一定的传染概率,该传播模式和2019-nCOV
更为吻合。

另外,我们对模型的假设条件是,美国的0号病人出现在今年1月11日,但是目前的报告陆续显示早在2019年美国就有社区性传播,因此模型对于此类具有较大不确定性地区的的可靠性大大下降。由于具体的时间目前国际上无法追溯,所以进一步的研究很难继续进行。

在SEIR模型中,还有以下几点需要注意:

1)传染率系数与人与人之间的社交距离和社交频率息息相关,美国在疫情早期未及时向民众宣传保持社交距离和戴口罩、减少出行的建议,导致传染率系数会比参数设置的更高;

2)治疗系数与当地医疗水平、卫生设施数量、医疗物资等息息相关,疫情中期各州的医疗设备全面告急,医护人员感染率上升,同时中产阶级及以下家庭因为无法支付高昂医疗费选择在家隔离,错过最佳治疗期,使得治疗系数要低于已经有雷神山火神山的武汉对应时期的治疗系数;
另外,SEIR模型在尝试同时拟合现有病例(正在接受治疗人群)和治愈人数曲线时,发现无法做到相对同时拟合的比较贴合实际的结果。参数设置对拟合结果的影响非常大,而模型参数的选择需要结合美国实际疫情情况才能推算,目前使用的计算手段过于粗糙。

参考资料

[1] 蔡洁等,基于SEIR模型对武汉市新型冠状病毒肺炎疫情发展趋势预测,山东医药
[2] 金启轩,中国新冠肺炎疫情预测建模与理性评估, 统计与决策
[3] 应用数学:群体免疫与SEIR模型,http://www.dataguru.cn/article-15472-1.html

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/273745.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

信号与线性系统翻转课堂笔记12——时域取样定理

信号与线性系统翻转课堂笔记12 The Flipped Classroom12 of Signals and Linear Systems 对应教材:《信号与线性系统分析(第五版)》高等教育出版社,吴大正著 一、要点 (1)了解信号取样的概念&#xff1…

医院云HIS系统源码,saas多医院版,适用于专科医院、集团医院、基层医院

医院云HIS系统源码,自主研发,自主版权,电子病历病历4级 系统概述: 一款满足基层医院各类业务需要的云HIS系统。该系统能帮助基层医院完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统…

9.传统的轨道画线算法(完成)

轨道画线分为以下步骤: 1.读取摄像头图片 2.图片灰度处理,截取轨道区域的图片 3.中值滤波处理,并区域取均值后做期望差的绝对值。本人通过一些轨道图片实验,用这种方法二值化得到的效果比caany算子等方法的效果好 4.二值化后再…

普中STM32-PZ6806L开发板(HAL库函数实现-批量操作GPIO引脚实现跑马灯)

简介 实现跑马灯, 但一个个引脚的操作实在是有些繁琐, 本次使用GPIO_WritePin接口实现批量操作GPIO引脚实现LED跑马灯。电路原理图 LED灯电路 LED灯连接主控芯片引脚图 实现说明 stm32f1xx_hal_gpio.h 关于GPIO引脚的定义如下 /** defgroup GPIO_pins_define GPIO pins …

[Angular] 笔记 13:模板驱动表单 - 单选按钮

Radio Buttons (Template Driven Forms) Radio Button&#xff0c; input 元素类型全部为 radio&#xff0c;因为是单选&#xff0c;name 属性值必须相同。 pokemon-template-form.component.html: <form #form"ngForm">Pokemon Name:<input type"t…

2D transform 1-translate

移位&#xff1a;translate 缩放&#xff1a;scale 旋转&#xff1a;rotate 扭曲&#xff1a;skew <style>.outer {width: 200px;height: 200px;border: 2px solid black;margin-top: 100px;}.inner {width: 200px;height: 200px;background-color: pink;transform: t…

使用web_video_server进行网页段的视频传输

引言&#xff1a;在项目中&#xff0c;需要实现无人机摄像头采集到的图像回传到window下进行查看&#xff0c;为此&#xff0c;选择使用web_video_server功能包实现局域网下的图像传输 硬件环境&#xff1a; 硬件&#xff1a;Jetson orin nano 8G D435摄像头 环境&#xff…

vue3+elementPlus+cascader动态加载封装自定义组件+v-model指令实现父子通信

文章目录 select普通操作 &#xff08;1&#xff09;cascader操作&#xff08;2&#xff09; select普通操作 &#xff08;1&#xff09; 搜索条件需求&#xff1a;接口入参需要houseId&#xff0c;但是要先选择完楼栋&#xff0c;再选择单元&#xff0c;最后选择房屋 如图&a…

k8s的二进制部署(一)

k8s的二进制部署&#xff1a;源码包部署 环境&#xff1a; k8smaster01: 20.0.0.71 kube-apiserver kube-controller-manager kube-schedule ETCD k8smaster02: 20.0.0.72 kube-apiserver kube-controller-manager kube-schedule Node节点01: 20.0.0.73 kubelet kube-pr…

GrayLog日志平台的基本使用-ssh接入Dashboards展示

这里使用的版本为graylog4.2.10 1、一键安装graylog4.2.10&#xff0c;解压zip包&#xff0c;执行脚本就行 链接&#xff1a;https://pan.baidu.com/s/11U7GpBZ1B7PXR8pyWVcHNw?pwdudln 提取码&#xff1a;udln 2、通过rsyslog采集系统日志&#xff0c;具体操作参考前面文…

饮用水中的砷、硝酸盐含量超标,离子交换工艺分享

随着人们对健康和生活质量的日益关注&#xff0c;饮用水安全问题成为了社会关注的焦点。在自然水体中的含量往往较高&#xff0c;而这些物质对人体健康存在一定的潜在风险。因此&#xff0c;饮用水处理中如何有效去除溴酸盐和硝酸盐&#xff0c;成为了当前水处理行业的重要课题…

CTFshow-pwn入门-栈溢出pwn39-pwn40

pwn39 首先我们还是先将二级制文件托到虚拟机里面查看文件的保护信息。 chmod x pwn checksec pwn文件依然是只开启了栈不可执行&#xff0c;canary和pie都没开。并且该文件是32位的&#xff0c;那我们就托到ida32中反编译一下吧。 int __cdecl main(int argc, const char **…

LSTM的记忆能力实验 [HBU]

目录 模型构建 LSTM层 模型训练 多组训练 模型评价 模型在不同长度的数据集上的准确率变化图 模型汇总 总结 长短期记忆网络&#xff08;Long Short-Term Memory Network&#xff0c;LSTM&#xff09;是一种可以有效缓解长程依赖问题的循环神经网络&#xff0e;LSTM 的…

go 源码解读 - sync.Mutex

sync.Mutex mutex简介mutex 方法源码标志位获取锁LocklockSlowUnlock怎么 调度 goroutineruntime 方法 mutex简介 mutex 是 一种实现互斥的同步原语。&#xff08;go-version 1.21&#xff09; &#xff08;还涉及到Go运行时的内部机制&#xff09;mutex 方法 Lock() 方法用于…

nodejs业务分层如何写后端接口

这里展示的是在node express 项目中的操作 &#xff0c;数据库使用的是MongoDB&#xff0c;前期关于express和MongoDB的文章可访问&#xff1a; Nodejs后端express框架 server后端接口操作&#xff1a;通过路由匹配——>调用对应的 Controller——>进行 Service调用——&…

如何将语音版大模型AI接入自己的项目里(语音ChatGPT)

如何将语音版大模型AI接入自己的项目里语音ChatGPT 一、语音版大模型AI二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例5、智能生成API代码 三、 如何获取appKey和uid1、申请appKey:2、获取appKey和uid 四、重要说明 一、语音版大模型AI 基于阿里通义千问、百…

ueditor富文本编辑器中图片上传地址配置以及抓取远程图片地址的配置

一&#xff1a;图片上传保存地址配置 打开文件ueditor.php,找到imagePathFormat进行修改即可 一&#xff1a;远程抓取图片配置 打开文件ueditor.config.js,找到catchRemoteImageEnable&#xff0c;取消注释即可

ElasticSearch 聚合统计

聚合统计 度量聚合&#xff1a;求字段的平均值&#xff0c;最小值&#xff0c;最大值&#xff0c;总和等 桶聚合&#xff1a;将文档分成不同的桶&#xff0c;桶的划分可以根据字段的值&#xff0c;范围&#xff0c;日期间隔 管道聚合&#xff1a;在桶聚合的结果上执行进一步计…

线程学习(3)-volatile关键字,wait/notify的使用

​ &#x1f495;"命由我作&#xff0c;福自己求"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;线程学习(2)​​​​ 一.volatile关键字 volatile关键字是多线程编程中一个非常重要的概念&#xff0c;它主要有两个功能&#xff1a;保证内存可见性…

JVM GC 算法原理概述

对于JVM的垃圾收集&#xff08;GC&#xff09;&#xff0c;这是一个作为Java开发者必须了解的内容&#xff0c;那么&#xff0c;我们需要去了解哪些内容呢&#xff0c;其实&#xff0c;GC主要是解决下面的三个问题&#xff1a; 哪些内存需要回收&#xff1f; 什么时候回收&…