《Python》:深拷贝、浅拷贝、赋值之间的关系(附可变与不可变)【用图文讲清楚!】

背景

想必大家面试或者平时学习经常遇到问python的深拷贝、浅拷贝和赋值之间的区别了吧?看网上的文章很多写的比较抽象,小白接收的难度有点大,于是乎也想自己整个文章出来供参考

可变与不可变

讲深拷贝和浅拷贝之前想讲讲什么是可变数据类型和不可变数据类型

这里有点绕,大概就是:

  •  可变指的是值变化后,变量的id地址没变(同一块地址,值是可以变得)
  • 不可变指的是值变化后,变量的id地址也变了(同一块地址,只能有一个值)

可变的数据类型有:列表(list)、字典(dict)、集合(set)

不可变数据类型有:整型(int)、浮点数(float)、字符串(string)、元组(tuple)、布尔(bool)

什么是不可变数据类型?

不可变具体怎么体现呢,以整形为例:

python中所有的整形都已经有自己的地址了,我们将整形赋值给变量的过程其实是变量的地址指向整形的地址

print(id(1))                                     # 140721648427816
a = 1
# a的id地址和1是一样的
print(id(a))                                     # 140721648427816
print(id(999999999999999999))                    # 2210500291920
b = 999999999999999999
print(id(b))                                     # 2210500291920
c = 1
# c也指向了1的地址,所以a和c的地址是一样的
print(id(a)==id(c))                              # True

同样的,如果将a的值修改为2,那么a的地址就会指向2的id地址。

print(id(1))                                     # 140721648427816
a = 1
# a的id地址和1是一样的
print(id(a))                                     # 140721648427816
a = 2
print(id(a))                                     # 140721573258056

所以,其实可变和不可变是对于id来说的一个id地址只能指向一个值的数据类型,就是不可变数据类型(换句话就是值变了,地址也变了)

什么是可变数据类型?

直接上代码!

l1 = [1,2,3]
print(id(l1))     # 2259540475456
# 修改变量的值
l1.append(4)
print(id(l1))     # 2259540475456
# 重新给列表赋值
l1 = [3,4,5]
print(id(l1))     # 2259540541952
# 给其他列表赋同样的值
l2 = [3,4,5]
print(id(l2))     # 2259540475456

可以看到,我们修改了列表的值,但是变量的id地址没有发生变化。像这种可以修改值,但是地址

没变,也就是id地址指向的值可以变化的,就叫做可变数据类型

但是!我们可以发现如果是重新给列表赋值,列表的地址是会发生变化的(这里需要注意赋值和修改是不一样的),同样的我们也可以看到给别的列表赋同样的值,他们的id地址也是不一样的

这是因为我们赋值的是一个列表,那么python在赋值之前呢就会创建一个列表对象(python一切皆对象!),那么创建列表对象的时候python就会给这个列表对象分配一个id,然后我们给l2进行赋值的时候也创建了新的列表对象,那么他就会有新的id

# 代码1
print(id([1,2,3]))  # 2048797408832
print(id([1,2,3]))  # 2048797408832
print(id([1,2,3]))  # 2048797408832
l1 = [1,2,3]
l2 = [1,2,3]
print(id(l1))       # 2048797408832
print(id(l2))       # 2048797475328

# 代码2
a = [1]
print(id(a))  # 执行三次,每次id都不一样

再来看看上面的代码,代码1,连续打印三个[1,2,3]他们的id是相同的,因为创建了[1,2,3]这个临时列表对象,且该对象还没有被回收。[1,2,3]赋值给l1后,居然id和[1,2,3]是一样的,是因为[1,2,3]有值但没有变量名(临时),在l1赋值[1,2,3]的时候就直接把id给了第一次出现的l1,而l2则是生成了一个新的列表对象,所以id和l1的不一样。

浅拷贝、深拷贝和赋值的区别

看到这里相信你已经知道什么是可变数据类型和不可变数据类型了,我们的浅拷贝和深拷贝之间的区别其实只有在可变数据类型才有区别的,或者说是对于可变数据类型才有的深拷贝

不可变数据类型下的浅拷贝、深拷贝和赋值

我们先来看看不可变数据类型的浅拷贝、深拷贝和赋值的区别:

import copy

a = "hello"
# a赋值给b
b = a
# c是a的浅拷贝
c = copy.copy(a)
# d是a的深拷贝
d = copy.deepcopy(a)
print("a的id:", id(a))
print("b的id:", id(b))
print("c的id:", id(c))
print("d的id:", id(d))

结果我们发现他们的id都是一样的,这是因为:

创建了一个临时字符串对象“hello”时分配了地址,然后声明变量a时,a指向了这个地址,然后赋值给b时,其实就是b也指向了a指向的地址,然后浅拷贝和深拷贝其实是返回了a这个变量

我们可以看看copy的源码:(如果不想看分析可以直接点目录看可变数据类型就知其区别)

copy的源码维护了一个_copy_dispatch的字典,第一个框是处理不可变数据类型的,如果是不可变数据类型的话会给这个字典赋值一个函数变量,比如

_copy_dispatch[<class 'int'>]=_copy_immutable

假如是我们刚刚传的字符串,那么代码是这样执行的:

可变数据类型下的浅拷贝、深拷贝和赋值【看这里快速弄懂!】

我们再来看看可变数据类型

import copy
a = [1,2,3]
b = a
c = copy.copy(a)
d = copy.deepcopy(a)
print("a的id:", id(a))  # a的id: 2880639630592
print("b的id:", id(b))  # b的id: 2880639630592
print("c的id:", id(c))  # c的id: 2880639446144
print("d的id:", id(d))  # d的id: 2880639446272

这里我们可以看到a的b的id是一样的,这里不再赘述,c和d都是新的id,好了这里我们可以看到和不可变数据类型的区别了,但是还看不出来浅拷贝和深拷贝的区别,我们继续往下看

如果是这种嵌套列表的(其他数据类型也可以只要是可变的就行)

浅拷贝时申请了一片新的地址,然后复制了a列表的第一层的值,后面其实还是指向了a嵌套列表的地址

这个时候我们发现如果你去修改c的嵌套列表是会影响a的值的!

import copy
a = [1,2,3,[4,5,6]]
c = copy.copy(a)
print(a)                                     # [1, 2, 3, [4, 5, 6]]
print(c)                                     # [1, 2, 3, [4, 5, 6]]
# 修改c的第一个元素和嵌套列表的第一个元素
c[0] = 0
c[3][0] = 7
print(a) # a中嵌套列表的值也变了              # [1, 2, 3, [7, 5, 6]]
print(c)                                     # [0, 2, 3, [7, 5, 6]]

有时候一些软件bug就是这样来的,找半天也想到是吧

但是浅拷贝就不一样了,他完全是自己的id地址,不会影响a了

import copy
a = [1,2,3,[4,5,6]]
d = copy.deepcopy(a)
print(a)                                     # [1, 2, 3, [4, 5, 6]]
print(d)                                     # [1, 2, 3, [4, 5, 6]]
# 修改d的第一个元素和嵌套列表的第一个元素
d[0] = 0
d[3][0] = 7
print(a) # a中嵌套列表的值没变                # [1, 2, 3, [4, 5, 6]]
print(d)     

结语

到这里差不多就讲完了,相信你已经十分了解浅拷贝、深拷贝和赋值之间的关系和区别了吧!如果你觉得文章对你有用能不能帮忙点点赞,收藏起来以防复习找不到呢

代码调试地址(实时内存分配图形显示):Python Tutor code visualizer: Visualize code in Python, JavaScript, C, C++, and Java

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/277979.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes 学习总结(43)—— Kubernetes 从提交 deployment 到 pod 运行的全过程

当用户向 Kubernetes 提交了一个创建 deployment 的请求后&#xff0c;Kubernetes 从接收请求直至创建对应的 pod 运行这整个过程中都发生了什么呢&#xff1f; kubernetes 架构简述 在搞清楚从 deployment 提交到 pod 运行整个过程之前&#xff0c;我们有先来看看 Kubernete…

【unity学习笔记】配置模型,实现眨眼和口型效果

一、vriod捏人 1.在vroidstudio软件中捏人 2.导出模型&#xff08;.vrm) 二、vrid导入unity的插件 1.在Git上搜索、打开univrm。 2.找到release页面找到合适的插件版本。&#xff08;VRM-0.116.0_0f6c&#xff09; 3.将univrm导入到工程中&#xff08;assets&#xff09;。 三…

Vue - 实现文件导出文件保存下载

1 文件导出&#xff1a;使用XLSX插件 需求背景&#xff1a;纯前端导出&#xff0c;如 在前端页面勾选部分表格数据&#xff0c;点击"导出"按钮导出Excel文件。 实现思路&#xff1a; 1.通过XLSX插件的 XLSX.utils.book_new()方法&#xff0c;创建excel工作蒲对象wb…

基于YOLOv7算法的高精度实时行人打电话检测系统(PyTorch+Pyside6+YOLOv7)

摘要&#xff1a;基于YOLOv7算法的高精度实时行人打电话检测系统可用于日常生活中检测与定位手机&#xff0c;此系统可完成对输入图片、视频、文件夹以及摄像头方式的目标检测与识别&#xff0c;同时本系统还支持检测结果可视化与导出。本系统采用YOLOv7目标检测算法来训练数据…

2023年度总结:技术旅程的杨帆远航⛵

文章目录 职业规划与心灵成长 ❤️‍&#x1f525;我的最大收获与成长 &#x1f4aa;新年Flag &#x1f6a9;我的技术发展规划 ⌛对技术行业的深度思考 &#x1f914;祝愿 &#x1f307; 2023 年对我来说是一个充实而令人难以忘怀的一年。这一年&#xff0c;我在CSDN上发表了 1…

3D视觉-激光三角测量法的分类

按照入射激光光束和被测物体表面法线的角度关系&#xff0c;一般分为直射式和斜射式两种方式。 1&#xff09;直射式测量 如图所示&#xff0c;激光器发出的光线&#xff0c;经会聚透镜聚焦后垂直入射到被测物体表面上&#xff0c;物体移动或者其表面变化&#xff0c;导致入射…

网络安全专家常用的12个操作系统

文章目录 前言一、什么是网络安全专家常用的OS和工具二、漏洞赏金猎人常用操作系统Kali LinuxParrot OSBlackArch Linux 三、恶意软件分析和逆向工程操作系统REMnux OSFlare-VM &#xff08;工具&#xff09; 四、OSINT和信息采集操作系统CSI LinuxTsurugi Linux 五、事件响应和…

PulseGAN

研究背景 远程光电容积描记术 (rPPG) 是一种非接触式技术&#xff0c;用于测量面部视频中的心脏信号。健康监测和情绪识别等许多领域都迫切需要高质量的 rPPG 脉冲信号。然而&#xff0c;由于脉搏信号不准确的限制&#xff0c;现有的大多数rPPG方法只能用于获取平均心率&#…

云上攻防--云服务对象存储(域名接管)弹性计算(元数据泄露)

云上攻防–云服务&&对象存储(域名接管)&&弹性计算(元数据泄露) 目录标题 云上攻防--云服务&&对象存储(域名接管)&&弹性计算(元数据泄露)对象存储权限配置错误域名接管AK/SK泄漏&#xff1a; 弹性计算元数据泄露加固措施 对象存储 各个厂商对于…

第6章 网页布局

学习目标 熟悉网页布局&#xff0c;能够说明DIVCSS布局的含义。 掌握元素的浮动属性&#xff0c;能够为元素添加和清除浮动。 熟悉overflow属性的用法&#xff0c;能够设置不同的内容溢出状态。 掌握元素的定位属性&#xff0c;能够设置不同的定位模式。 了解元素的类型&am…

外汇天眼:Valdas Dapkus和Tradewale因零售外汇欺诈计划被判支付280万美元

美国衍生品市场监管机构商品期货交易委员会&#xff08;CFTC&#xff09;宣布&#xff0c;美国新泽西地区法院于11月28日发布了对位于伊利诺伊州的Valdas Dapkus的最终裁定默认令。5月4日&#xff0c;法院对Dapkus控制的两家实体——Tradewale LLC和Tradewale Managed Fund发布…

自动化测试po模式是什么?自动化测试po分层如何实现?

一、什么是PO模式 全称&#xff1a;page object model 简称&#xff1a;POM/PO PO模式最核心的思想是分层&#xff0c;实现松耦合&#xff01;实现脚本重复使用&#xff0c;实现脚本易维护性&#xff01; 主要分三层&#xff1a; 1.基础层BasePage&#xff1a;封装一些最基…

10、RabbitMQ高频面试题

1、你们项目中哪里用到了RabbitMQ RabbitMQ是我们项目中服务通信的主要方式之一 , 我们项目中服务通信主要有二种方式实现 : 通过Feign实现服务的同步调用通过MQ实现服务的异步通信 下面要结合自己的项目中功能来说两个地方 xxx xxx 2、为什么会选择使用RabbitMQ 我们项…

flutter 之proto

和嵌入式用proto协议来通信&#xff0c;以mac来演示 先在电脑上安装protobuf&#xff08;在博主文章内容里面搜Mac安装protobuf&#xff09;&#xff0c;然后在桌面上放这几个文件&#xff0c;且build_proto_dart.sh文件内容如图所示 #!/bin/bashSCRIPT$(readlink -f "$0…

【数据结构】C语言实现双链表的基本操作

双链表及其基本操作的实现 导言一、单链表与双链表二、双链表类型的创建三、双链表的初始化四、双链表的创建五、双链表的遍历六、双链表的查找七、双链表的插入八、双链表的删除结语 导言 大家好&#xff0c;很高兴又和大家见面啦&#xff01;&#xff01;&#xff01; 经过…

Spire.Office for Java 8.12.0

Spire.Office for Java 8.12.0 发布。在该版本中&#xff0c;Spire.XLS for Java支持检索使用WPS工具添加的嵌入图像&#xff1b;Spire.PDF for Java 增强了从 PDF 到 SVG、PDF/A1B 和 PDF/A2A 的转换。此外&#xff0c;该版本还修复了许多已知问题。下面列出了更多详细信息。 …

算法基础day1

归并排序模版 #include <iostream> using namespace std; int n; const int N 1e610; int q[N],tmp[N]; void merge_sort(int l,int r,int q[]){if(l>r) return;int mid lr>>1;merge_sort(l,mid,q);merge_sort(mid1,r,q);//归并的的过程int k0,il,jmid1;while(…

蔓灵花组织wmRAT攻击武器对比分析

概述 蔓灵花&#xff0c;又名"Bitter"、"APT-C-08"、"T-APT-17"以及"苦象"&#xff0c;常对南亚周边及孟加拉湾海域的相关国家发起网络攻击&#xff0c;主要针对巴基斯坦和中国两国。其攻击目标主要包括政府部门、核工业、能源、国防…

openGauss学习笔记-178 openGauss 数据库运维-逻辑复制-逻辑解码-使用SQL函数接口进行逻辑解码

文章目录 openGauss学习笔记-178 openGauss 数据库运维-逻辑复制-逻辑解码-使用SQL函数接口进行逻辑解码178.1 前提条件178.2 操作步骤 openGauss学习笔记-178 openGauss 数据库运维-逻辑复制-逻辑解码-使用SQL函数接口进行逻辑解码 openGauss可以通过调用SQL函数&#xff0c;…

GLTF编辑器-位移贴图实现破碎的路面

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 位移贴图是一种可以用于增加模型细节和形状的贴图。它能够在渲染时针…
最新文章