stm32中的i2c协议

stm32中I2C

文章目录

  • stm32中I2C
  • I2C 协议简介
    • I2C物理层
    • 协议层
      • I2C基本读写过程
    • **通讯的起始和停止信号**
    • **数据有效性**
    • **地址及数据方向**
    • **响应**
  • STM32的I2C特性及架构
    • **STM32** **的** I2C外设简介
      • STM32 的 I 2C 架构剖析
      • 通讯引脚
  • 通讯过程
    • 主发送器
    • 主接收器
  • I2C初始化结构体
  • 代码实现
    • 硬件代码
    • 软件代码

I2C 协议简介

I2C物理层

协议通讯图

在这里插入图片描述

  1. I2C上一个总线能挂载多个设备共用信号线,可以连接多个从机
  2. 只用了两个总线,一条双向串行数据线(SDA),一条串行时钟线(SCL)。数据线即用来表示数据,时钟线用于数据收发同步。
  3. 每个连接到总线的设备都有独立的地址,主机可以通过该地址进行访问
  4. I2C空闲时输出高阻态,当所有设备都空闲时,由上拉电阻把总线拉成高电平
  5. 主机同时使用总线时,会用仲裁的方式来决定
  6. 三种传输模式:标准模式传输速率为 100kbit/s ,快速模式为 400kbit/s ,高速模式下可达3.4Mbit/s,但目前大多 I 2C 设备尚不支持高速模式。
  7. 连接到相同总线的IC数量收到总线的最大电容400pF限制。

协议层

I2C 的协议定义了通讯的起始和停止信号、数据有效性、响应、仲裁、时钟同步和地址广播等环节。

I2C基本读写过程

先看看 I2C 通讯过程的基本结构,它的通讯过程见图主机写数据到从机 、图主机由从机中读数据 及图 I2C 通讯复合格式 。

在这里插入图片描述
在这里插入图片描述

注意:

  • 从机地址:7位或者10位
  • 应答信号:只有接收到应答信号后主句才会继续发送或者接收数据

写数据:(将数据写入地址)

  • 从机向主机写完地址并且接收到应答信号
  • 正式向从机传输数据(DATA),数据包的大小为8位,主机没发送完一个字节数据,都要等待从机的应答信号(ACK),重复这个过程,可以传输N个数据,N大小没有限制。数据结束时向从机发送一个停止传输信号(P),表示不再传输数据。

读数据:(将数据从地址读出)

  • 从机向主机写完设备地址并且收到应答信号
  • 从机开始向主机返回数据 (DATA),数据包大小也为 8 位,从机每发送完一个数据,都会等待主机的应答信号 (ACK),重复这个过程,可以返回 N 个数据,这个 N 也没有大小限制。当主机希望停止接收数据时,就向从机返回一个非应答信号 (NACK),则从机自动停止数据传输。

读和写数据:(从主机找到设备后再读)

  • 除了基本的读写,I2C 通讯更常用的是复合格式,即第三幅图的情况,该传输过程有两次起始信号 (S)。
  • 一般在第一次传输中,主机通过 SLAVE_ADDRESS 寻找到从设备后,发送一段“数据”,这段数据通常用于表示从设备内部的寄存器或存储器地址 (注意区分它与 SLAVE_ADDRESS 的区别);
  • 在第二次的传输中,对该地址的内容进行读或写。也就是说,第一次通讯是告诉从机读写地址,第二次则是读写的实际内容

通讯的起始和停止信号

在这里插入图片描述

数据有效性

在这里插入图片描述

地址及数据方向

七位地址

在这里插入图片描述

  • I2C协议规定地址可以是七位或者十位,但是通常使用七位。
  • 前七位或者前十位是从机地址,第八位或者第十一位是读写标志符

响应

在这里插入图片描述

STM32的I2C特性及架构

  • 硬件协议(stm32的有点问题,很容易卡死)
  • 软件协议(推荐使用)

STM32 I2C外设简介

STM32 的 I 2C 架构剖析

在这里插入图片描述

通讯引脚

引脚I2C1I2C2
SCLPB6/PB8(重映射)PB10
SDAPB7/PB9(重映射)PB111

通讯过程

主发送器

在这里插入图片描述

主接收器

在这里插入图片描述

I2C初始化结构体

typedef struct
{
  uint32_t I2C_ClockSpeed;          /*!< Specifies the clock frequency.
                                         This parameter must be set to a value lower than 400kHz */

  uint16_t I2C_Mode;                /*!< Specifies the I2C mode.
                                         This parameter can be a value of @ref I2C_mode */

  uint16_t I2C_DutyCycle;           /*!< Specifies the I2C fast mode duty cycle.
                                         This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */

  uint16_t I2C_OwnAddress1;         /*!< Specifies the first device own address.
                                         This parameter can be a 7-bit or 10-bit address. */

  uint16_t I2C_Ack;                 /*!< Enables or disables the acknowledgement.
                                         This parameter can be a value of @ref I2C_acknowledgement */

  uint16_t I2C_AcknowledgedAddress; /*!< Specifies if 7-bit or 10-bit address is acknowledged.
                                         This parameter can be a value of @ref I2C_acknowledged_address */
}I2C_InitTypeDef;
结构体名称作用
I2C_ClockSpeed控制速度
I2C_Mode控制模式
I2C_DutyCycle控制占空比
I2C_OwnAddress1控制自己的地址
I2C_Ack控制应答
I2C_AcknowledgedAddress控制设备地址

代码实现

硬件代码

/**
  ******************************************************************************
  * @file    bsp_i2c_ee.c
  * @author  STMicroelectronics
  * @version V1.0
  * @date    2013-xx-xx
  * @brief   i2c EEPROM(AT24C02)应用函数bsp
  ******************************************************************************
  * @attention
  *
  * 实验平台:野火 F103-指南者 STM32 开发板 
  *
  ******************************************************************************
  */ 

#include "./i2c/bsp_i2c_ee.h"
#include "./usart/bsp_usart.h"		




uint16_t EEPROM_ADDRESS;

static __IO uint32_t  I2CTimeout = I2CT_LONG_TIMEOUT;   


static uint32_t I2C_TIMEOUT_UserCallback(uint8_t errorCode);


/**
  * @brief  I2C I/O配置
  * @param  无
  * @retval 无
  */
static void I2C_GPIO_Config(void)
{
  GPIO_InitTypeDef  GPIO_InitStructure; 

	/* 使能与 I2C 有关的时钟 */
	EEPROM_I2C_APBxClock_FUN ( EEPROM_I2C_CLK, ENABLE );
	EEPROM_I2C_GPIO_APBxClock_FUN ( EEPROM_I2C_GPIO_CLK, ENABLE );
	
    
  /* I2C_SCL、I2C_SDA*/
  GPIO_InitStructure.GPIO_Pin = EEPROM_I2C_SCL_PIN;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;	       // 开漏输出
  GPIO_Init(EEPROM_I2C_SCL_PORT, &GPIO_InitStructure);
	
  GPIO_InitStructure.GPIO_Pin = EEPROM_I2C_SDA_PIN;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;	       // 开漏输出
  GPIO_Init(EEPROM_I2C_SDA_PORT, &GPIO_InitStructure);	
	
	
}


/**
  * @brief  I2C 工作模式配置
  * @param  无
  * @retval 无
  */
static void I2C_Mode_Configu(void)
{
  I2C_InitTypeDef  I2C_InitStructure; 

  /* I2C 配置 */
  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
	
	/* 高电平数据稳定,低电平数据变化 SCL 时钟线的占空比 */
  I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
	
  I2C_InitStructure.I2C_OwnAddress1 =I2Cx_OWN_ADDRESS7; 
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable ;
	 
	/* I2C的寻址模式 */
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
	
	/* 通信速率 */
  I2C_InitStructure.I2C_ClockSpeed = I2C_Speed;
  
	/* I2C 初始化 */
  I2C_Init(EEPROM_I2Cx, &I2C_InitStructure);
  
	/* 使能 I2C */
  I2C_Cmd(EEPROM_I2Cx, ENABLE);   
}


/**
  * @brief  I2C 外设(EEPROM)初始化
  * @param  无
  * @retval 无
  */
void I2C_EE_Init(void)
{

  I2C_GPIO_Config(); 
 
  I2C_Mode_Configu();

/* 根据头文件i2c_ee.h中的定义来选择EEPROM的设备地址 */
#ifdef EEPROM_Block0_ADDRESS
  /* 选择 EEPROM Block0 来写入 */
  EEPROM_ADDRESS = EEPROM_Block0_ADDRESS;
#endif

#ifdef EEPROM_Block1_ADDRESS  
	/* 选择 EEPROM Block1 来写入 */
  EEPROM_ADDRESS = EEPROM_Block1_ADDRESS;
#endif

#ifdef EEPROM_Block2_ADDRESS  
	/* 选择 EEPROM Block2 来写入 */
  EEPROM_ADDRESS = EEPROM_Block2_ADDRESS;
#endif

#ifdef EEPROM_Block3_ADDRESS  
	/* 选择 EEPROM Block3 来写入 */
  EEPROM_ADDRESS = EEPROM_Block3_ADDRESS;
#endif
}


/**
  * @brief   将缓冲区中的数据写到I2C EEPROM中
  * @param   
  *		@arg pBuffer:缓冲区指针
  *		@arg WriteAddr:写地址
  *     @arg NumByteToWrite:写的字节数
  * @retval  无
  */
void I2C_EE_BufferWrite(u8* pBuffer, u8 WriteAddr, u16 NumByteToWrite)
{
  u8 NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0;

  Addr = WriteAddr % I2C_PageSize;
  count = I2C_PageSize - Addr;
  NumOfPage =  NumByteToWrite / I2C_PageSize;
  NumOfSingle = NumByteToWrite % I2C_PageSize;
 
  /* If WriteAddr is I2C_PageSize aligned  */
  if(Addr == 0) 
  {
    /* If NumByteToWrite < I2C_PageSize */
    if(NumOfPage == 0) 
    {
      I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
      I2C_EE_WaitEepromStandbyState();
    }
    /* If NumByteToWrite > I2C_PageSize */
    else  
    {
      while(NumOfPage--)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, I2C_PageSize); 
    	I2C_EE_WaitEepromStandbyState();
        WriteAddr +=  I2C_PageSize;
        pBuffer += I2C_PageSize;
      }

      if(NumOfSingle!=0)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
        I2C_EE_WaitEepromStandbyState();
      }
    }
  }
  /* If WriteAddr is not I2C_PageSize aligned  */
  else 
  {
    /* If NumByteToWrite < I2C_PageSize */
    if(NumOfPage== 0) 
    {
      I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
      I2C_EE_WaitEepromStandbyState();
    }
    /* If NumByteToWrite > I2C_PageSize */
    else
    {
      NumByteToWrite -= count;
      NumOfPage =  NumByteToWrite / I2C_PageSize;
      NumOfSingle = NumByteToWrite % I2C_PageSize;	
      
      if(count != 0)
      {  
        I2C_EE_PageWrite(pBuffer, WriteAddr, count);
        I2C_EE_WaitEepromStandbyState();
        WriteAddr += count;
        pBuffer += count;
      } 
      
      while(NumOfPage--)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, I2C_PageSize);
        I2C_EE_WaitEepromStandbyState();
        WriteAddr +=  I2C_PageSize;
        pBuffer += I2C_PageSize;  
      }
      if(NumOfSingle != 0)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle); 
        I2C_EE_WaitEepromStandbyState();
      }
    }
  }  
}


/**
  * @brief   写一个字节到I2C EEPROM中
  * @param   
  *		@arg pBuffer:缓冲区指针
  *		@arg WriteAddr:写地址 
  * @retval  无
  */
uint32_t I2C_EE_ByteWrite(u8* pBuffer, u8 WriteAddr) 
{
  /* Send STRAT condition */
  I2C_GenerateSTART(EEPROM_I2Cx, ENABLE);

  I2CTimeout = I2CT_FLAG_TIMEOUT;  
  /* Test on EV5 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_MODE_SELECT))  
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(0);
  } 
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Send EEPROM address for write */
  I2C_Send7bitAddress(EEPROM_I2Cx, EEPROM_ADDRESS, I2C_Direction_Transmitter);
  
  /* Test on EV6 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(1);
  }  
  /* Send the EEPROM's internal address to write to */
  I2C_SendData(EEPROM_I2Cx, WriteAddr);
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV8 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(2);
  } 
  
  /* Send the byte to be written */
  I2C_SendData(EEPROM_I2Cx, *pBuffer); 
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;  
  /* Test on EV8 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(3);
  } 
  
  /* Send STOP condition */
  I2C_GenerateSTOP(EEPROM_I2Cx, ENABLE);
  
  return 1;
}


/**
  * @brief   在EEPROM的一个写循环中可以写多个字节,但一次写入的字节数
  *          不能超过EEPROM页的大小,AT24C02每页有8个字节
  * @param   
  *		@arg pBuffer:缓冲区指针
  *		@arg WriteAddr:写地址
  *     @arg NumByteToWrite:写的字节数
  * @retval  无
  */
uint32_t I2C_EE_PageWrite(u8* pBuffer, u8 WriteAddr, u8 NumByteToWrite)
{
  I2CTimeout = I2CT_LONG_TIMEOUT;

  while(I2C_GetFlagStatus(EEPROM_I2Cx, I2C_FLAG_BUSY))   
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(4);
  } 
  
  /* Send START condition */
  I2C_GenerateSTART(EEPROM_I2Cx, ENABLE);
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV5 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_MODE_SELECT))  
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(5);
  } 
  
  /* Send EEPROM address for write */
  I2C_Send7bitAddress(EEPROM_I2Cx, EEPROM_ADDRESS, I2C_Direction_Transmitter);
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV6 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))  
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(6);
  } 
  
  /* Send the EEPROM's internal address to write to */    
  I2C_SendData(EEPROM_I2Cx, WriteAddr);  

  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV8 and clear it */
  while(! I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(7);
  } 

  /* While there is data to be written */
  while(NumByteToWrite--)  
  {
    /* Send the current byte */
    I2C_SendData(EEPROM_I2Cx, *pBuffer); 

    /* Point to the next byte to be written */
    pBuffer++; 
  
    I2CTimeout = I2CT_FLAG_TIMEOUT;

    /* Test on EV8 and clear it */
    while (!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
    {
      if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(8);
    } 
  }

  /* Send STOP condition */
  I2C_GenerateSTOP(EEPROM_I2Cx, ENABLE);
  
  return 1;
}


/**
  * @brief   从EEPROM里面读取一块数据 
  * @param   
  *		@arg pBuffer:存放从EEPROM读取的数据的缓冲区指针
  *		@arg WriteAddr:接收数据的EEPROM的地址
  *     @arg NumByteToWrite:要从EEPROM读取的字节数
  * @retval  无
  */
uint32_t I2C_EE_BufferRead(u8* pBuffer, u8 ReadAddr, u16 NumByteToRead)
{  
  
  I2CTimeout = I2CT_LONG_TIMEOUT;
  
  //*((u8 *)0x4001080c) |=0x80; 
  while(I2C_GetFlagStatus(EEPROM_I2Cx, I2C_FLAG_BUSY))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(9);
   }
  
  /* Send START condition */
  I2C_GenerateSTART(EEPROM_I2Cx, ENABLE);
  //*((u8 *)0x4001080c) &=~0x80;
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV5 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_MODE_SELECT))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(10);
   }
  
  /* Send EEPROM address for write */
  I2C_Send7bitAddress(EEPROM_I2Cx, EEPROM_ADDRESS, I2C_Direction_Transmitter);

  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV6 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(11);
   }
    
  /* Clear EV6 by setting again the PE bit */
  I2C_Cmd(EEPROM_I2Cx, ENABLE);

  /* Send the EEPROM's internal address to write to */
  I2C_SendData(EEPROM_I2Cx, ReadAddr);  

   
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV8 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_TRANSMITTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(12);
   }
    
  /* Send STRAT condition a second time */  
  I2C_GenerateSTART(EEPROM_I2Cx, ENABLE);
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV5 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_MODE_SELECT))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(13);
   }
    
  /* Send EEPROM address for read */
  I2C_Send7bitAddress(EEPROM_I2Cx, EEPROM_ADDRESS, I2C_Direction_Receiver);
  
  I2CTimeout = I2CT_FLAG_TIMEOUT;
  /* Test on EV6 and clear it */
  while(!I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED))
  {
    if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(14);
   }
  
  /* While there is data to be read */
  while(NumByteToRead)  
  {
    if(NumByteToRead == 1)
    {
      /* Disable Acknowledgement */
      I2C_AcknowledgeConfig(EEPROM_I2Cx, DISABLE);
      
      /* Send STOP Condition */
      I2C_GenerateSTOP(EEPROM_I2Cx, ENABLE);
    }

    /* Test on EV7 and clear it */    
    I2CTimeout = I2CT_LONG_TIMEOUT;
    
		while(I2C_CheckEvent(EEPROM_I2Cx, I2C_EVENT_MASTER_BYTE_RECEIVED)==0)  
		{
			if((I2CTimeout--) == 0) return I2C_TIMEOUT_UserCallback(3);
		} 
    {      
      /* Read a byte from the EEPROM */
      *pBuffer = I2C_ReceiveData(EEPROM_I2Cx);

      /* Point to the next location where the byte read will be saved */
      pBuffer++; 
      
      /* Decrement the read bytes counter */
      NumByteToRead--;        
    }   
  }

  /* Enable Acknowledgement to be ready for another reception */
  I2C_AcknowledgeConfig(EEPROM_I2Cx, ENABLE);
  
    return 1;
}


/**
  * @brief  Wait for EEPROM Standby state 
  * @param  无
  * @retval 无
  */
void I2C_EE_WaitEepromStandbyState(void)      
{
  vu16 SR1_Tmp = 0;

  do
  {
    /* Send START condition */
    I2C_GenerateSTART(EEPROM_I2Cx, ENABLE);
    /* Read I2C1 SR1 register */
    SR1_Tmp = I2C_ReadRegister(EEPROM_I2Cx, I2C_Register_SR1);
    /* Send EEPROM address for write */
    I2C_Send7bitAddress(EEPROM_I2Cx, EEPROM_ADDRESS, I2C_Direction_Transmitter);
  }while(!(I2C_ReadRegister(EEPROM_I2Cx, I2C_Register_SR1) & 0x0002));
  
  /* Clear AF flag */
  I2C_ClearFlag(EEPROM_I2Cx, I2C_FLAG_AF);
    /* STOP condition */    
    I2C_GenerateSTOP(EEPROM_I2Cx, ENABLE); 
}




/**
  * @brief  Basic management of the timeout situation.
  * @param  errorCode:错误代码,可以用来定位是哪个环节出错.
  * @retval 返回0,表示IIC读取失败.
  */
static  uint32_t I2C_TIMEOUT_UserCallback(uint8_t errorCode)
{
  /* Block communication and all processes */
  EEPROM_ERROR("I2C 等待超时!errorCode = %d",errorCode);
  
  return 0;
}
/*********************************************END OF FILE**********************/


软件代码

/**
  ******************************************************************************
  * @file    bsp_i2c_ee.c
  * @version V1.0
  * @date    2013-xx-xx
  * @brief   i2c EEPROM(AT24C02)应用函数bsp
  ******************************************************************************
  * @attention
  *
  * 实验平台:野火 F103-指南者 STM32 开发板 
  *
  ******************************************************************************
  */ 

#include "bsp_i2c_ee.h"
#include "bsp_i2c_gpio.h"
#include "bsp_usart.h" 

/*
*********************************************************************************************************
*	函 数 名: ee_CheckOk
*	功能说明: 判断串行EERPOM是否正常
*	形    参:无
*	返 回 值: 1 表示正常, 0 表示不正常
*********************************************************************************************************
*/
uint8_t ee_CheckOk(void)
{
	if (i2c_CheckDevice(EEPROM_DEV_ADDR) == 0)
	{
		return 1;
	}
	else
	{
		/* 失败后,切记发送I2C总线停止信号 */
		i2c_Stop();		
		return 0;
	}
}

/*
*********************************************************************************************************
*	函 数 名: ee_ReadBytes
*	功能说明: 从串行EEPROM指定地址处开始读取若干数据
*	形    参:_usAddress : 起始地址
*			 _usSize : 数据长度,单位为字节
*			 _pReadBuf : 存放读到的数据的缓冲区指针
*	返 回 值: 0 表示失败,1表示成功
*********************************************************************************************************
*/
uint8_t ee_ReadBytes(uint8_t *_pReadBuf, uint16_t _usAddress, uint16_t _usSize)
{
	uint16_t i;
	
	/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
	
	/* 第1步:发起I2C总线启动信号 */
	i2c_Start();
	
	/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_WR);	/* 此处是写指令 */
	 
	/* 第3步:等待ACK */
	if (i2c_WaitAck() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}

	/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
	i2c_SendByte((uint8_t)_usAddress);
	
	/* 第5步:等待ACK */
	if (i2c_WaitAck() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}
	
	/* 第6步:重新启动I2C总线。前面的代码的目的向EEPROM传送地址,下面开始读取数据 */
	i2c_Start();
	
	/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
	i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_RD);	/* 此处是读指令 */
	
	/* 第8步:发送ACK */
	if (i2c_WaitAck() != 0)
	{
		goto cmd_fail;	/* EEPROM器件无应答 */
	}	
	
	/* 第9步:循环读取数据 */
	for (i = 0; i < _usSize; i++)
	{
		_pReadBuf[i] = i2c_ReadByte();	/* 读1个字节 */
		
		/* 每读完1个字节后,需要发送Ack, 最后一个字节不需要Ack,发Nack */
		if (i != _usSize - 1)
		{
			i2c_Ack();	/* 中间字节读完后,CPU产生ACK信号(驱动SDA = 0) */
		}
		else
		{
			i2c_NAck();	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
		}
	}
	/* 发送I2C总线停止信号 */
	i2c_Stop();
	return 1;	/* 执行成功 */

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	i2c_Stop();
	return 0;
}

/*
*********************************************************************************************************
*	函 数 名: ee_WriteBytes
*	功能说明: 向串行EEPROM指定地址写入若干数据,采用页写操作提高写入效率
*	形    参:_usAddress : 起始地址
*			 _usSize : 数据长度,单位为字节
*			 _pWriteBuf : 存放读到的数据的缓冲区指针
*	返 回 值: 0 表示失败,1表示成功
*********************************************************************************************************
*/
uint8_t ee_WriteBytes(uint8_t *_pWriteBuf, uint16_t _usAddress, uint16_t _usSize)
{
	uint16_t i,m;
	uint16_t usAddr;
	
	/* 
		写串行EEPROM不像读操作可以连续读取很多字节,每次写操作只能在同一个page。
		对于24xx02,page size = 8
		简单的处理方法为:按字节写操作模式,每写1个字节,都发送地址
		为了提高连续写的效率: 本函数采用page wirte操作。
	*/

	usAddr = _usAddress;	
	for (i = 0; i < _usSize; i++)
	{
		/* 当发送第1个字节或是页面首地址时,需要重新发起启动信号和地址 */
		if ((i == 0) || (usAddr & (EEPROM_PAGE_SIZE - 1)) == 0)
		{
			/* 第0步:发停止信号,启动内部写操作 */
			i2c_Stop();
			
			/* 通过检查器件应答的方式,判断内部写操作是否完成, 一般小于 10ms 			
				CLK频率为200KHz时,查询次数为30次左右
			*/
			for (m = 0; m < 1000; m++)
			{				
				/* 第1步:发起I2C总线启动信号 */
				i2c_Start();
				
				/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
				i2c_SendByte(EEPROM_DEV_ADDR | EEPROM_I2C_WR);	/* 此处是写指令 */
				
				/* 第3步:发送一个时钟,判断器件是否正确应答 */
				if (i2c_WaitAck() == 0)
				{
					break;
				}
			}
			if (m  == 1000)
			{
				goto cmd_fail;	/* EEPROM器件写超时 */
			}
		
			/* 第4步:发送字节地址,24C02只有256字节,因此1个字节就够了,如果是24C04以上,那么此处需要连发多个地址 */
			i2c_SendByte((uint8_t)usAddr);
			
			/* 第5步:等待ACK */
			if (i2c_WaitAck() != 0)
			{
				goto cmd_fail;	/* EEPROM器件无应答 */
			}
		}
	
		/* 第6步:开始写入数据 */
		i2c_SendByte(_pWriteBuf[i]);
	
		/* 第7步:发送ACK */
		if (i2c_WaitAck() != 0)
		{
			goto cmd_fail;	/* EEPROM器件无应答 */
		}

		usAddr++;	/* 地址增1 */		
	}
	
	/* 命令执行成功,发送I2C总线停止信号 */
	i2c_Stop();
	return 1;

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
	/* 发送I2C总线停止信号 */
	i2c_Stop();
	return 0;
}


void ee_Erase(void)
{
	uint16_t i;
	uint8_t buf[EEPROM_SIZE];
	
	/* 填充缓冲区 */
	for (i = 0; i < EEPROM_SIZE; i++)
	{
		buf[i] = 0xFF;
	}
	
	/* 写EEPROM, 起始地址 = 0,数据长度为 256 */
	if (ee_WriteBytes(buf, 0, EEPROM_SIZE) == 0)
	{
		printf("擦除eeprom出错!\r\n");
		return;
	}
	else
	{
		printf("擦除eeprom成功!\r\n");
	}
}


/*--------------------------------------------------------------------------------------------------*/
static void ee_Delay(__IO uint32_t nCount)	 //简单的延时函数
{
	for(; nCount != 0; nCount--);
}


/*
 * eeprom AT24C02 读写测试
 * 正常返回1,异常返回0
 */
uint8_t ee_Test(void) 
{
  uint16_t i;
	uint8_t write_buf[EEPROM_SIZE];
  uint8_t read_buf[EEPROM_SIZE];
  
/*-----------------------------------------------------------------------------------*/  
  if (ee_CheckOk() == 0)
	{
		/* 没有检测到EEPROM */
		printf("没有检测到串行EEPROM!\r\n");
				
		return 0;
	}
/*------------------------------------------------------------------------------------*/  
  /* 填充测试缓冲区 */
	for (i = 0; i < EEPROM_SIZE; i++)
	{		
		write_buf[i] = i;
	}
/*------------------------------------------------------------------------------------*/  
  if (ee_WriteBytes(write_buf, 0, EEPROM_SIZE) == 0)
	{
		printf("写eeprom出错!\r\n");
		return 0;
	}
	else
	{		
		printf("写eeprom成功!\r\n");
	}
  
  /*写完之后需要适当的延时再去读,不然会出错*/
  ee_Delay(0x0FFFFF);
/*-----------------------------------------------------------------------------------*/
  if (ee_ReadBytes(read_buf, 0, EEPROM_SIZE) == 0)
	{
		printf("读eeprom出错!\r\n");
		return 0;
	}
	else
	{		
		printf("读eeprom成功,数据如下:\r\n");
	}
/*-----------------------------------------------------------------------------------*/  
  for (i = 0; i < EEPROM_SIZE; i++)
	{
		if(read_buf[i] != write_buf[i])
		{
			printf("0x%02X ", read_buf[i]);
			printf("错误:EEPROM读出与写入的数据不一致");
			return 0;
		}
    printf(" %02X", read_buf[i]);
		
		if ((i & 15) == 15)
		{
			printf("\r\n");	
		}		
	}
  printf("eeprom读写测试成功\r\n");
  return 1;
}
/*********************************************END OF FILE**********************/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/279120.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

工程(十六)——自己数据集跑Fast_livo

一、基础环境 Ubuntu20.04 ROS noetic PCL 1.8 Eigen 3.3.4 Sophus git clone https://github.com/strasdat/Sophus.git cd Sophus git checkout a621ff mkdir build && cd build && cmake .. make sudo make install 下面两个直接把包下载下来一起编译…

swing快速入门(三十二)消息对话框

注释很详细&#xff0c;直接上代码 新增内容 1.自定义对话框前列图标 2.消息对话框的若干种形式 package swing21_30;import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent;public class swing_test_30 {// 定义一个JFrameJFrame jFrame new JFram…

React 、Vue进度 条首屏加载制作

React 大家都听说过&#xff0c;是一个非常出名的前端 框架 &#xff0c;目前在公司 用的比较多的两个前端框架 &#xff0c;一个是 React , 一个 是 Vue 2 、3 &#xff0c;公司 的首页 &#xff0c;后台 前端部分 都是 以这两个为主 &#xff0c;做了 不下 数十个 项目 但是 …

大数据背后的绿色收割:基于Hadoop的农产品价格信息智能分析

大数据背后的绿色收割&#xff1a;基于Hadoop的农产品价格信息智能分析 引言正文1. 数据获取与准备2. 数据清洗与处理3. Hadoop数据分析引擎的运用4. MySQL数据库的集成5. 创新性的可视化6. 结论与展望 结语 引言 随着信息技术的不断发展&#xff0c;农业领域也在数字化的浪潮…

【2023年终总结】纵是一路仆仆风尘,也莫忘了仰头

文章目录 1. 写在前面2. 关于生活3. 关于工作4. 关于以后 【作者主页】&#xff1a;吴秋霖 【作者介绍】&#xff1a;Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作&#xff01; 【作者推荐】&#xff1a;对JS逆向感兴趣的朋…

阿里云2核2G3M服务器放几个网站?

阿里云2核2g3m服务器可以放几个网站&#xff1f;12个网站&#xff0c;阿里云服务器网的2核2G服务器上安装了12个网站&#xff0c;甚至还可以更多&#xff0c;具体放几个网站取决于网站的访客数量&#xff0c;像阿里云服务器网aliyunfuwuqi.com小编的网站日访问量都很少&#xf…

三路电源互备自投电路

当供电源停电时&#xff0c;主备用电源自动投入运行&#xff0c;当主备用电源断电时&#xff0c;则次备用电源自动投入运行&#xff0c;从而大大提高供电的可靠性。

基于three.js的室内全景3D展馆案例分享

先看效果图 实现了第一人称行走&#xff0c;WASD点击目标画册进行预览查看位置音乐播放环绕地面镜面反光碰撞检测等等. 地址在gitee上gallery: 数字展馆概念的demo项目&#xff0c;本项目中使用的技术栈为three.js 有兴趣的伙伴可以去下载看看&#xff0c;有这方面的项目应该能…

Python FastApi连接oracle进行查询

这边技术选型是cx_oracle进行连接查询&#xff0c;cx_oracle的使用首先要有官方的客户端才能连接到数据库&#xff0c;python并不自带客户端。我用是Python3.9 安装客户端 可以到官网在选择最新版进行下载。 Instant Client for Microsoft Windows (x64) 64-bit 或者直接从我…

maven命令行安装依赖测试

mvn dependency:get -DgroupIdorg.springframework -DartifactIdspring-core -Dversion5.3.9作用&#xff1a;可用于测试配置环境变量后&#xff0c;能否下载依赖到本地仓库

【SpringCloud】从实际业务问题出发去分析Eureka-Server端源码

文章目录 前言1.EnableEurekaServer2.初始化缓存3.jersey应用程序构建3.1注册jeseryFilter3.2构建JerseyApplication 4.处理注册请求5.registry&#xff08;&#xff09; 前言 前段时间遇到了一个业务问题就是k8s滚动发布Eureka微服务的过程中接口会有很多告警&#xff0c;当时…

nacos入门篇001-安装与启动

1、下载zip包 我这里下载的是版本2.2.0 Nacos 快速开始 2、修改配置文件 2.1集群模式修改成单例模式 vi startup.sh 2.2 修改数据库配置信息 3、初始化数据库 3.1 创建db名称&#xff1a;db_nacos 3.2 执行mysql-schema.sql 3.3 执行完截图&#xff1a; 4、运行脚本启动 …

实现区域地图散点图效果,vue+echart地图+散点图

1.效果图 2.准备工作,在main.js和index.js文件中添加以下内容 main.js app.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M6tDCApL,// v:3.0, // 默认使用3.0// type: WebGL // ||API…

【Kubernetes】kubectl 常用命令

kubectl 常用命令 1.基础命令2.部署命令3.集群管理命令4.故障诊断与调试命令5.高级命令6.设置命令7.其他命令 1.基础命令 命令 说明 create通过文件名或标准输入创建 Kubernetes 的资源expose将 Kubernetes 的资源展露为一个服务run在集群中运行一个特定的镜像set修改对象的特…

初识Java并发,一问读懂Java并发知识文集(3)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

Windows环境检验NodeJs安装是否成功

Windows环境检验NodeJs安装是否成功 检验方法 1、winR 打开运行窗口&#xff0c;在此窗口输入cmd命令 2、进入命令提示符窗口&#xff0c;分别输入以下命令&#xff0c;显示版本号&#xff0c;则安装成功 node -v&#xff1a;显示安装的nodejs版本npm -v&#xff1a;显示安装…

GOM转996视频教程(急速转换)新手小白必看

GOM转996视频教程(急速转换)新手小白必看 GOM转996视频教程(急速转换)视频内容详细有声音&#xff0c;并且附件中包含了视频中所用到的工具&#xff0c;可以说是新手小白的理解教程。 1.GOM版本的介绍以及996单机搭建.wmv 2.地图资源分类与打包.wmv 3.NPC资源分类与打包.wmv 4…

MIT线性代数笔记-第33讲-复习三

目录 33.复习三打赏 33.复习三 已知 d u ⃗ d t A u ⃗ [ 0 − 1 0 1 0 − 1 0 1 0 ] u ⃗ \dfrac{d \vec{u}}{dt} A \vec{u} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \vec{u} dtdu ​Au ​010​−101​0−10​ ​…

Conda:Python环境管理的瑞士军刀

在数据科学和机器学习的世界中&#xff0c;管理各种库和依赖关系的重要性不容忽视。Conda 就是为此而生的强大工具。本文将深入探讨 Conda 的简介、功能以及使用示例&#xff0c;帮助你更好地理解和使用这个工具。 Conda 简介 Conda 是一个开源的包管理系统和环境管理系统&am…

《PCI Express体系结构导读》随记 —— 第I篇 第1章 PCI总线的基本知识(16)

接前一篇文章&#xff1a;《PCI Express体系结构导读》随记 —— 第I篇 第1章 PCI总线的基本知识&#xff08;15&#xff09; 1.3 PCI总线的存储器读写总线事务 1.3.5 Delayed传送方式 如前文所述&#xff0c;当处理器使用Non-Posted总线周期对PCI设备进行操作、或者PCI设备使…
最新文章