【三维目标检测/自动驾驶】IA-BEV:基于结构先验和自增强学习的实例感知三维目标检测(AAAI 2024)

系列文章目录

论文:Instance-aware Multi-Camera 3D Object Detection with Structural Priors Mining and Self-Boosting Learning
地址:https://arxiv.org/pdf/2312.08004.pdf
来源:复旦大学 英特尔Shanghai Key Lab /美团


文章目录

  • 系列文章目录
  • 摘要
  • 一、前言
  • 二、提出解决方案
  • 三、主要方法
    • 3.1 特征编码器
    • 3.2 结构先验挖掘
      • 01.基于类别的深度解码器
      • 02.基于实例的监督
    • 3.3 Self-Boosting 学习
      • 01.稀疏的Cost Volume构建
      • 02.迭代立体匹配
    • 3.4 BEV特征处理器
  • 四、实验效果
  • 总结


摘要

  多相机三维目标检测是自动驾驶领域的一个重要研究方向,常用方法是将多视图图像特征转换到统一的鸟瞰图(BEV)空间进行感知。我们提出了一种实例感知的鸟瞰图检测器(IA-BEV),它在深度估计过程中引入了图像平面上的实例感知信息。在nuScenes数据集上,方法在使用两个关键帧的情况下达到了最先进的结果


一、前言

  近年来,多相机三维目标检测在自动驾驶领域受到了广泛的关注。与激光雷达相比,其摄像头能够更好地捕获物体的语义信息,并且具有更低的成本优势。这个领域的最新趋势是将多视图图像特征转换到统一的BEV空间进行后续的感知任务。这种表示方式有利于在BEV空间中对来自多个传感器和时间戳的信号进行对齐,从而为下游的任务(如检测、地图分割和运动规划)提供了一种通用的表示形式。

  在基于BEV的感知流程中,深度估计是从图像视图到BEV的透视投影的关键环节。早期的方法从单目图像中隐式或显式地估计深度。受到多视立体匹配技术的启发,后续的方法利用连续的摄像机帧构建cost volumn进行立体匹配。由于深度估计的提升,这些方法获得了高质量的BEV特征,从而明显提高了检测性能。

  尽管已经取得了明显的进展,但由于现有的方法将每个像素都看得同等重要,因此忽略了前景物体中的固有属性。事实上,前景物体可以表现出类内一致性和实例间的差异性,我们认为这可以用来改善深度估计。 一方面,相同语义类别的物体具有相似的结构先验 ,这体现为两点:

1)图像中物体的尺度与其真实深度有一定的相关性,这种相关性通常对相同语义类别的物体是一致的,而对不同类别的物体是不同的。例如,图像中汽车的尺度与其真实深度成反比,但即使在相同的深度下,汽车和行人的尺度也有明显的差异。

2)相同语义类别的物体具有一致的内部几何结构。如图1(b)所示,当从图像平面上分离观察时,相同类别(汽车)的物体具有相似的相对深度分布。

   另一方面,对于不同的实例物体,即使在同一类别中,由于分辨率和遮挡状态的不同,它们的视觉外观也有很大的差异 。因此,对不同实例物体的深度估计难度也是不同的。如图1所示,左侧汽车图像包含更多的纹理和形状细节,从而降低了深度估计的不确定性。虽然一些方法探索了二维物体先验用于三维物体检测,但它们主要利用透视投影后的检测到的二维物体,从而忽略了它们改进深度估计以增强BEV特征构建的潜力。

在这里插入图片描述

二、提出解决方案

  基于上述观察,提出了一种 利用二维实例感知增强基于BEV检测器的深度估计算法,即IA-BEV。如图1(d)所示,我们的IA-BEV首先将场景分解为各个物体,然后利用这些物体的固有属性,通过两个新颖的模块分别有效地辅助单目和立体深度估计:

在这里插入图片描述
图2|我们提出方法的详细设计。给定从多视角摄像头收集的图像,我们首先使用现成的二维场景解析器解析前景物体。然后,这些物体及其图像特征被并行地输入到我们提出的SPM和SBL中,通过从类别和实例两个角度探索物体属性来进行有效的深度估计。最后,SPM和SBL的输出被合并,得到最终的图像深度,并用于常规的视图变换和基于BEV的检测。T帧和T-1帧被分别输入到SPM中,而它们被同时输入到SBL中,因为这里的立体匹配需要多帧时间信息

   第一个模块是基于类别的结构先验挖掘(SPM),它将属于相同或 相似语义类别的物体分组,由各自的轻量级深度解码器进行处理,以更好地利用结构先验。然而,仅仅通过分组输入来期望这些并行解码器主动学习类别特定的模式是非常困难的,导致性能不佳。为了解决这个问题,我们 显式地将物体尺度属性编码为额外的输入,并应用两个基于实例的损失函数来监督粗略的实例绝对深度和细致的内部物体相对深度预测。

   第二个模块是自增强学习(SBL),它以与类别无关的方式运行,侧重于迭代地区分和强化较难的物体。每次迭代,首先根据立体匹配的不确定性将物体划分为两个组。然后,不确定性较高的组(表示估计不准确)在后续的迭代中得到进一步的强化。由于后期迭代中需要处理的前景区域逐渐变得稀疏,我们可以在不确定性范围内为选定的有挑战性的样本设置更密集的深度假设,以便对它们进行更全面的立体匹配。最后,在SPM和SBL的结合深度估计的基础上,进行常规的视图变换过程,构建BEV特征用于最终检测。

  


三、主要方法

  IA-BEV包含四个关键组成部分:特征编码器,负责提取图像特征和解析前景物体;结构先验挖掘方法(SPM),通过利用相同类别物体的结构一致性来增强单目深度估计;自增强学习策略(SBL),在立体深度估计中强化模糊的物体;BEV特征编码器,用于渲染特征和在BEV空间中检测物体。

3.1 特征编码器

  多视角摄像头收集的图像,使用主干网络(如ResNet-50或ConvNeXt)提取图像特征。同时,我们使用成熟的实例分割器解析前景物体,这里我们保留了物体所有像素的特征,而不是汇总成一个向量,因为我们的目标是为整个物体区域密集地预测深度。随后使用 SPM 和 SBL ,发挥物体固有属性在深度估计中的潜力

3.2 结构先验挖掘

01.基于类别的深度解码器

  从单目图像估计深度具有挑战性,因为它需要理解不同语义物体尺度与深度值之间的关系。 现有基于BEV的方法采用流行的图像主干网络作为特征编码器,以赋予模型强大的语义捕获能力,但是它们依赖单个深度解码器同时学习多个语义类别的尺度到深度映射模式,增加了优化的负担

  为了简化不同语义类别的学习过程,设计了 多个并行的轻量级深度解码器,其中每个解码器负责处理属于同一类别的物体,如图2所示。具体地,我们首先将所有前景物体划分成若干不重叠的语义组。然后,以从语义组中提取的物体特征,我们将物体特征和框参数(即标准化的框高和宽)同时输入轻量级深度解码器。在每个深度解码器中,框参数通过线性映射进行编码,然后使用SE模块与物体特征进行融合。最后,输出将通过卷积层预测当前物体区域的深度。最后,通过合并所有实例预测的深度,就可以获得单目估计的深度。

02.基于实例的监督

  在典型的基于BEV的感知流程中,深度预测通过像素级交叉熵损失进行监督,这无法捕获细粒度的实例级提示,从而增加了上述类别特定深度解码器学习语义结构先验的难度。因此,我们设计了两个新的损失函数来鼓励学习 粗略的实例绝对深度 细致的实例内部的相对深度首先,我们将物体离散的深度预测转换为连续的深度值。然后,我们将激光雷达点投影到图像平面上以获得GroundTruth深度,并保留那些与前景物体相交的部分来构建监督信号

  此时,我们同时拥有预测值和GroundTruth 深度值。为了明确监督实例级深度预测,对于每个物体,我们提取一个绝对深度值 Dgt 作为回归目标值得注意的是,由于传感器存在误差,在GroundTruth 深度中存在一些离群值,这给我们的监督模型带来了巨大挑战。因此,我们首先将所有的深度值散点到预定义的深度bins中,然后仅对在投票数最大的深度仓中的值取平均数,作为计算绝对深度损失 dgt另外,我们还计算相对深度损失以鼓励特定解码器学习细粒度的物体几何模式

在这里插入图片描述

3.3 Self-Boosting 学习

   基于时间的立体匹配技术依赖于时间维度上的几何一致性,进行深度估计。具体地,对于T帧中的每个像素,我们最初沿深度通道提出几个深度假设。然后,这些假设通过在T帧和(T-1)帧之间的单应变换投影到(T-1)帧中,以构建成本体积并学习它们之间的最佳匹配。在上述过程中,主要障碍在于为大量高分辨率图像特征中的像素和密集的假设构建三维成本体积带来的巨大内存开销。但是,在我们的场景中,图像区域不应该一视同仁。

  首先,与背景区域相比,前景物体更重要。其次,视觉清晰度较低的物体的深度估计更具挑战性,应该给予更多关注。因此,我们设计了一种自增强策略,迭代地关注较难的物体区域,这进一步允许根据不同区域自适应地调整成本体积构建的粒度,从而在成本和效果之间实现更好的权衡。

01.稀疏的Cost Volume构建

  为了提高效率,我们主要关注探索T帧中前景物体的立体匹配行为,这打破了传统的密集Cost Volume 构建范式。因此,我们将这样的过程改写为如下介绍的稀疏格式。我们使用T帧和(T-1)帧之间的单应变换对其进行变换以获取对应的投影位置,对于不同深度假设的每个像素,我们在(T-1)帧中建立其对应的像素,然后组合它们的特征生成稀疏Cost Volume。随后,使用三维稀疏卷积计算匹配分数。

以坐标(u, u) 以及对应的深度假设 dh为例,对第T帧和第T-1帧之间的 homography warping来获得相应投影:
在这里插入图片描述
式中,K为摄像机的固有参数,MT→T-1 为从第T 到 T-1帧的变换矩阵。按照上述过程,对于每一个具有不同深度假设的目标像素,我们建立其与(T-1)帧像素的对应关系,然后与特征组合,生成稀疏代Cost Volume V E RNpxNaxCf
,其中Np和Nd 分别为前景像素个数和深度假设个数,Cf 为特征通道维数。随后,使用3D稀疏卷积计算匹配分数。

02.迭代立体匹配

  在第一轮中,为了有效识别视觉细节丰富的物体,我们为前景物体中的所有像素均匀采样稀疏深度假设。然后构建稀疏Cost Volume,计算匹配分数。我们沿像素深度通道计算均值和标准差。当均值和标准差很小时,深度假设已经被成功验证来找到最佳匹配。相反,较大的均值和标准差,意味着多个深度假设被优先考虑,因此应该进一步得到增强。因此,我们将匹配分数标准差小于预定义阈值的像素视为满意的结果,并在下一迭代中对其进行过滤。对于剩余的像素,它们的均值和标准差可以提供更准确的搜索范围,这有助于为下一迭代更有效地提出深度假设。根据均值和标准差,我们更新下一迭代的深度采样范围。

  我们进一步为剩余像素均匀采样多个深度假设。深度假设将在下一迭代中用于构建稀疏Cost Volume 和类似的计算均值和标准差。由于不同迭代的深度假设数量不同,我们采用插值操作填充所有预定义的深度bin进行对齐。如图4所示,所提出的自增强学习策略可以在早期迭代中区分主要清晰的物体区域,从而节省资源强化模糊的物体。

在这里插入图片描述

SBL中过滤和剩余patch的可视化。灰色斑块表示背景区域,蓝色和橙色斑块分别表示过滤后的斑块和剩余的斑块。我们使用红色和蓝色虚线圆圈分别突出显示模糊和清晰的对象

3.4 BEV特征处理器

  通过求和从SPM和SBL预测的单目和立体深度,可以得到用于从多相机图像渲染BEV特征的最终深度预测。之后,BEV特征将被输入到常规的检测头进行最终的三维检测。

四、实验效果

方法在nuScenes数据集上进行了大量的实验,与最先进方法的对比(验证集和测试集):
在这里插入图片描述
在这里插入图片描述

基线方法和IA-BEV之间的定性结果对比:
在这里插入图片描述

总结

提示:这里对文章进行总结:

  

  








d \sqrt{d} d 1 0.24 \frac {1}{0.24} 0.241 x ˉ \bar{x} xˉ x ^ \hat{x} x^ x ~ \tilde{x} x~ ϵ \epsilon ϵ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/279629.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

交互式笔记Jupyter Notebook本地部署并实现公网远程访问内网服务器

最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下…

Java guava partition方法拆分集合自定义集合拆分方法

日常开发中&#xff0c;经常遇到拆分集合处理的场景&#xff0c;现在记录2中拆分集合的方法。 1. 使用Guava包提供的集合操作工具栏 Lists.partition()方法拆分 首先&#xff0c;引入maven依赖 <dependency><groupId>com.google.guava</groupId><artifa…

Leetcode算法系列| 10. 正则表达式匹配

目录 1.题目2.题解C# 解法一&#xff1a;分段匹配法C# 解法二&#xff1a;回溯法C# 解法三&#xff1a;动态规划 1.题目 给你一个字符串 s 和一个字符规律 p&#xff0c;请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 1.‘.’ 匹配任意单个字符 2.‘.’ 匹配任意单个字…

SimpleCG小游戏开发系列(2)--贪吃蛇

一、前言 在之前的C语言小游戏开发系列我们已经介绍了扫雷游戏的开发&#xff0c;本篇我们继续此系列第二篇&#xff0c;同样是比较简单但好玩的一个游戏--贪吃蛇。因为有了之前的游戏框架&#xff0c;我们只需要直接搬来原来的框架即可&#xff0c;可以省去不少活。 先看看游…

布隆过滤器-使用原理和场景

一、概述 布隆过滤器&#xff08;Bloom Filter&#xff09;主要用来检索一个元素是否在一个集合中。它是一种数据结构bitMap,优点是高效的插入和查询&#xff0c;而且非常节省空间。缺点是存在误判率和删除困难。 二、应用场景 1、避免缓存穿透&#xff0c;当redis做缓…

图像的颜色及Halcon颜色空间转换transfrom_rgb/trans_to_rgb/create_color_trans lut

图像的颜色及Halcon颜色空间转换 文章目录 图像的颜色及Halcon颜色空间转换一. 图像的色彩空间1. RGB颜色 2. 灰度图像3. HSV/ HSI二. Bayer 图像三. 颜色空间的转换1. trans_from_rgb算子2. trans_to_rgb算子3. create_color_trans_lut算子 图像的颜色能真实地反映人眼所见的真…

C++的面向对象学习(7):面向对象编程的三大特性之:继承

文章目录 前言一、继承&#xff1a;继承的类除了拥有上一级类的共性&#xff0c;也拥有自己的特性。二、继承方式&#xff1a;公有继承&#xff08;public inheritance&#xff09;、私有继承&#xff08;private inheritance&#xff09;和保护继承&#xff08;protected inhe…

JavaScript基础知识点总结:从零开始学习JavaScript(六)

本章内容主要让小伙伴们自主练习 &#xff0c;建议大家先自己写出来答案&#xff0c;然后对照我的&#xff01;&#xff08;题不难主要培养自己的编程思维&#xff01;&#xff01;&#xff01;&#xff09; 如果大家感感兴趣也可以去看&#xff1a; &#x1f389;博客主页&…

matlab导出高清图片,须经修改后放入latex(例如添加文字说明,matlab画图不易操作)

一、背景 我们在写文章时&#xff0c;使用matlab画图后&#xff0c;如果不需要对图片进行额外修改或调整&#xff0c;例如添加文字说明&#xff0c;即可直接从matlab导出eps格式图片&#xff0c;然后插入到latex使用。 通常latex添加图片&#xff0c;是需要eps格式的。 但很…

两种汇编的实验

week04 一、汇编-1二、汇编-2 一、汇编-1 1 通过输入gcc -S -o main.s main.c -m32 将下面c程序”week0401学号.c“编译成汇编代码 int g(int x){ return x3; } int f(int x){ int i 学号后两位&#xff1b; return g(x)i; } int main(void){ return f(8)1; } 2. 删除汇编代码…

vr体验馆用什么软件计时计费,如遇到停电软件程序如何恢复时间

vr体验馆用什么软件计时计费&#xff0c;如遇到停电软件程序如何恢复时间 一、软件程序问答 如下图&#xff0c;软件以 佳易王vr体验馆计时计费软件V17.9为例说明 1、软件如何计时间&#xff1f; 点击相应编号的开始计时按钮即可 2、遇到停电再打开软件时间可以恢复吗&…

跨域是什么,如何解决跨域

文章目录 前言一、 什么是跨域&#xff1f;二、常见跨域问题三、如何解决跨域如何解决跨域&#xff08;方式&#xff09;前端解决跨域问题CORS反向代理JSONP 总结 前言 跨域是在开发中经常遇到的问题&#xff0c;那什么是跨域呢&#xff1f;及常见跨域的处理方案有哪些呢&…

深入了解云原生:定义与特征解析

文章目录 一、云原生概述1.1 什么是云原生1.2 云原生组成要素1.3 补充资料 二、云原生的目标2.1 云原生关键目标2.2 云原生特性 三、云原生应用 VS 传统单体应用参考资料 一、云原生概述 1.1 什么是云原生 (1)云原生定义 云原生(Cloud Native) 是一种软件架构和开发方法论&a…

D1671 75Ω视频放大驱动芯片 ,2.8~5.5V 应用于手持设备中 内 置 SAG端 子 6dB放 大 器 电 路

D1671 是 一 块 带 4 级 低 通 滤 波 的 单 通 道 视 频 放 大 电 路 &#xff0c; 可 在 3V 或 5V的 低 电 压 下 工 作 。 该 电 路 用 在 有 TV 影 象 输 出 功 能 的 产 品 上 面 &#xff0c; 比 如 机 顶 盒 &#xff0c;监 控 摄 象 头 &#xff0c;DVD &#xff1b;此 …

JSON 详解

文章目录 JSON 的由来JSON 的基本语法JSON 的序列化简单使用stringify 方法之 replacerstringify 方法之 replacer 参数传入回调函数stringify 方法之 spacestringify 方法之 toJSONparse 方法之 reviver 利用 stringify 和 parse 实现深拷贝 json 相信大家一定耳熟能详&#x…

WebGL以及wasm的介绍以及简单应用

简介 下面主要介绍了WebGL和wasm,是除了html,css,js以外Web标准所支持的另外两个大件 前者实现复杂的图形处理,后者提供高效的代码迁移以及代码执行效率 WebGL 简介 首先,浏览器里的游戏是怎么做到这种交互又显示不同的画面的? 试想用我们的前端三件套实现一下.好像可以…

HackTheBox - Medium - Linux - Bagel

Bagel 今天我开始了《Red Team Development and Operations A Practical Guide》的学习&#xff0c;保持学习&#xff0c;后面差不多到时机后就学CRTOⅡ Bagel 是一款中等难度的 Linux 机器&#xff0c;其特点是电子商店容易受到路径遍历攻击&#xff0c;通过该攻击可以获取应…

ZigBee协议栈 -- Zstack协议栈(Zstack2.5.1a)

文章目录 Zstack 协议栈介绍ZStack 的安装ZStack 的结构系统初始化启动操作系统 设备的选择定位编译选项ZStack 中的寻址ZStack 中的路由OSAL 调度管理ZStack 中的串口通信设置配置信道配置 PANID 和要加入的网络最大有效载荷大小非易失性存储器 Zstack 协议栈介绍 CC2530 芯片…

【华为机试】2023年真题B卷(python)-计算最大乘积

一、题目 题目描述&#xff1a; 给定一个元素类型为小写字符串的数组&#xff0c;请计算两个没有相同字符的元素长度乘积的最大值&#xff0c;如果没有符合条件的两个元素&#xff0c;返回0。 二、输入输出 输入描述: 输入为一个半角逗号分隔的小写字符串的数组&#xff0c;2 &…

Collections

Collections Collections四种对集合进行排序的方式 方法名说明public static <T extends Comparable<? super T>> void sort (List<T> list)排序public static void reverse(List<?> list)逆序public static void shuffle(List<?> list)随机…
最新文章