助力打造智慧数字课堂,基于YOLOv8全系列【n/s/m/l/x】不同参数量级模型开发构建教学课堂场景下学生课堂行为检测识别分析系统

近年来,随着行为检测技术的发展,分析学生在课堂视频中的行为,以获取他们的课堂状态和学习表现信息已经成为可能。这项技术对学校的教师、管理人员、学生和家长都非常重要。使用深度学习方法自动检测学生的课堂行为是分析学生课堂表现和提高教学效果的一种很有前途的方法。在传统的教学模式中,教师很难及时有效地关注每个学生的学习情况,只能通过观察少数学生来了解自己教学方法的有效性。加之课堂时间有效提问式的交互方式难以覆盖到所有人群,传统的应试教育模式通过考试来检查学生知识掌握的程度往往具有滞后性和低效性。除此之外,学生家长只有通过与老师和学生的交流才能了解孩子的学习情况。而这些反馈相对具有主观性,学习本身是一个需要自发性主动性去参与的过程,但是在青春的年纪很多学习之外的诱惑或者是注意力不集中等因素会导致学生在课堂的参与度不高,如何通过教学过程中的及时反馈响应来聚焦课堂注意力提高教学效率成为了最核心的问题,我们不是教育专家,我们只是喜欢探讨如何将技术与现实生活场景相结合,本文的核心思想就是想要探索利用目标检测模型来检测分析学生的行为,分析他们的学习状态和表现,对于出现的异常行为进行响应或者是记录,为教育教学提供更全面、准确的反馈,通过对课堂行为数据的分析进而有效地纠正低效的课堂行为,从而提高学习成绩。

本文主要是选择最新的YOLOv8来开发实现检测模型,我们开发了五款不同参数量级的模型用于整体对比分析,首先看下实例效果:

简单看下实例数据情况:

训练数据配置文件如下所示:

# Dataset
path: ./dataset
train:
  - /data/dataset/images/train
val:
  - /data/dataset/images/test
test:
  - /data/dataset/images/test
 
 
# Classes
names:
  0: handRaising
  1: reading
  2: writing
  3: usingPhone
  4: bowingHead
  5: learningOverTable

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型。

分类也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls22466.687.012.90.312.74.3
YOLOv8s-cls22472.391.123.40.356.413.5
YOLOv8m-cls22476.493.285.40.6217.042.7
YOLOv8l-cls22478.094.1163.00.8737.599.7
YOLOv8x-cls22478.494.3232.01.0157.4154.8

分割也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg64036.730.596.11.213.412.6
YOLOv8s-seg64044.636.8155.71.4711.842.6
YOLOv8m-seg64049.940.8317.02.1827.3110.2
YOLOv8l-seg64052.342.6572.42.7946.0220.5
YOLOv8x-seg64053.443.4712.14.0271.8344.1

姿态估计也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPpose
50-95
mAPpose
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose64050.480.1131.81.183.39.2
YOLOv8s-pose64060.086.2233.21.4211.630.2
YOLOv8m-pose64065.088.8456.32.0026.481.0
YOLOv8l-pose64067.690.0784.52.5944.4168.6
YOLOv8x-pose64069.290.21607.13.7369.4263.2
YOLOv8x-pose-p6128071.691.24088.710.0499.11066.4

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 6 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

五款不同参数量级的模型学习率变化走势是完全一致的,如下:

综合对比实验结果:可以看到n系列的模型呗其他四个参数量级的模型拉开了明显的差距,s系列的模型与m、l和x系列的模型差距不大但是也是比较明显的,m、l和x三款不同参数量级的模型则没有明显的差距,性能趋于相近,考虑到算力的问题,最终线上模型选择了更为轻量级的m系列的模型。

接下来我们详细看下m系列模型的结果:

【Batch实例】

【训练可视化】

【PR曲线】

精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

检测只是第一步也是最基础的一步,假设我们的时间尺度为单节课堂的时长,这里可以通过后台汇聚分析不同行为的占比,从而对调整教学方式或者是内容起到一定的辅助知道作用,更进一步的话可以考虑做到不同人的粒度,统计计算出来每个学生每堂课的不同行为时长,从而针对性地制定相应的改正方案,对于提高学生的成绩有一定的帮助作用,数字化指挥课堂从来不是虚无缥缈的说辞,而是在信息化智能化技术不断蓬勃发展的今天,越来越多的场景、产品、需求开始考虑如何将技术有效地落地应用推广到实际的生活场景之中,为我们的生活赋能为我们的效率提速为我们的的工作提质,这才是更应该去花时间思考的事情。

时间有限,知识技术水平不足,仅以此抛砖引玉,希望未来会有更多真正有用的技术能让我们的生活更加多彩。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/280761.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉技术-目标检测数据集

目标检测领域没有像MNIST和Fashion-MNIST那样的小数据集。 为了快速测试目标检测模型,我们收集并标记了一个小型数据集。 首先,我们拍摄了一组香蕉的照片,并生成了1000张不同角度和大小的香蕉图像。 然后,我们在一些背景图片的随机…

分享好用稳定快递查询api接口(对接简单)

提供实时查询和自动识别单号信息。稳定高效,调用简单方便,性价比高,一条链接即可对接成功。 使用数据平台该API接口需要先注册后申请此API接口。申请成功后赠送免费次数,可直接在线请求接口数据。 接口地址:https://…

ArkUI中自定义组件的生命周期

文章概叙 本文主要是介绍下在作为page以及component的时候的生命周期,以及调用API等应该在哪个生命周期使用。 书接上回 之前的博客已经结束了对底部栏的操作,现在开始需要关注到具体内容的对接了。 而开发的第一步,我们对页面的生命周期…

你了解螺杆螺纹吗?

螺杆的螺纹部分是其核心部分之一,主要作用是传递旋转运动和力矩,丝杆的螺纹形状和参数对其性能和使用寿命有着重要影响;常用的螺杆螺纹可以分为:三角牙螺纹、梯形牙螺纹、矩形牙螺纹、锯齿牙螺纹、滚珠螺纹。 1、三角牙&#xff1…

Tomcat与Servlet是什么关系

Tomcat与Servlet是什么关系 Apache Tomcat和Servlet之间存在密切的关系,可以说它们是一对密切合作的组件。下面是它们的关系: Tomcat是Servlet容器: Tomcat是一个开源的、轻量级的Servlet容器。Servlet容器是一个Web服务器扩展,用…

【YOLOV8实例分割——详细记录环境配置、自定义数据处理到模型训练与部署】

前言 Ultralytics YOLOv8是一种前沿的、最先进的(SOTA)模型,它在前代YOLO版本的成功基础上进行了进一步的创新,引入了全新的特性和改进,以进一步提升性能和灵活性。作为一个高速、精准且易于操作的设计,YOL…

LOAM: Lidar Odometry and Mapping in Real-time 论文阅读

论文链接 LOAM: Lidar Odometry and Mapping in Real-time 0. Abstract 提出了一种使用二维激光雷达在6自由度运动中的距离测量进行即时测距和建图的方法 距离测量是在不同的时间接收到的,并且运动估计中的误差可能导致生成的点云的错误配准 本文的方法在不需要高…

软件工程期末复习习题

知识点总结 第一章:软件工程概述 1、软件的定义:在运行中能提供所希望的功能与性能的程序使程序能够正确运行的数据及其结构描述软件研制过程和方法所用的文档。 2、软件危机:软件开发的生产率远远不能满足客观需要。开发的软件产品往往不能…

MyBatis-config.xml配置文件

1、基本介绍: mybatis的核心配置文件(mybatis-config.xml),比如配置jdbc连接信息,注册mapper等等,我们需要对这个配置文件有详细的了解。 官网地址有详细介绍 mybatis – MyBatis 3 | 配置 2、properties属性 在通常的情况下&am…

【Apache Doris】自定义函数之 JAVA UDF 详解

【Apache Doris】自定义函数之 JAVA UDF 详解 一、背景说明二、原理简介三、环境信息3.1 硬件信息3.2 软件信息 四、IDE准备五、JAVA UDF开发流程5.1 源码准备5.1.1 pom.xml5.1.2 JAVA代码 5.2 mvn打包5.2.1 clean5.2.2 package 5.3 函数使用5.3.1 upload5.3.2 使用 六、注意事…

TV端Web页面性能优化实践

01 背景 随着互联网技术的持续创新和电视行业的高速发展,通过电视观看在线视频已经逐渐成为大众的重要娱乐方式。奇异果App作为在TV设备上用户活跃度最高的应用之一,为广大用户提供了丰富的内容播放服务,除此之外,同样有会员运营、…

苹果CMS超级播放器专业版无授权全开源,附带安装教程

源码介绍 超级播放器专业版v1.0.8,内置六大主流播放器,支持各种格式的视频播放,支持主要功能在每一个播放器内核中都相同效果。 搭建教程 1.不兼容IE浏览器 2.php版本推荐7.4 支持7.1~7.4 3.框架引入不支持同时引入多个播放器 json对接教…

【Linux】Linux

Linux 文章目录 Linux1. 简介2. 目录结构3. vi/vim 的使用4. 网络配置4.1 配置网络ip地址4.2 配置主机名或ip映射4.3 远程登陆及上传下载 5. 系统管理5.1 service 服务管理(CentOS 6 版本)5.2 systemctl 服务管理(CentOS 7 版本)5…

SpringMVC源码解析——DispatcherServlet的逻辑处理

DispatcherServlet类相关的结构图如下: 其中jakarta.servlet.http.HttpServlet的父类是jakarta.servlet.GenericServlet,实现接口jakarta.servlet.Servlet。我们先看一下jakarta.servlet.Servlet接口的源码如下: /*** 定义所有servlet必须实…

tcpdump出现permission denied

在使用tcpdump -i eth0 src host 192.168.0.184 and ip and port 22 -nn -w ping.pacp命令抓包并把抓到的数据保存到ping.pacp时,出现了权限错误的报错。但实际上我这里用的是root用户执行的命令。 查阅man手册发现: 在tcpdump中,-Z选项用于在启动数据…

思维训练-怎样设计一个MQ

架构师需要做各种设计,要不断地提高自己的设计能力。这有没有方法可以训练呢?有的,就是看到什么、想到什么,就假设对面坐着产品经理,一起讨论怎么把它设计出来。比如怎样设计一个MQ 我:首先我确认一下需求。…

nodejs+vue+ElementUi摄影预约服务网站系统91f0v

本系统提供给管理员对首页,个人中心,用户管理,员工管理,摄影套餐管理,套餐系列管理,客片欣赏管理,摄影预约管理,摄影订单管理,取片通知管理,摄影评价管理&…

优化算法3D可视化

编程实现优化算法,并3D可视化 1. 函数3D可视化 分别画出 和 的3D图 import numpy as np from matplotlib import pyplot as plt import torch# 画出x**2 class Op(object):def __init__(self):passdef __call__(self, inputs):return self.forward(inputs)def for…

分布式系统架构设计之分布式数据存储的分类和组合策略

在现下科技发展迅猛的背景下,分布式系统已经成为许多大规模应用和服务的基础架构。分布式架构的设计不仅仅是一项技术挑战,更是对数据存储、管理和处理能力的严峻考验。随着云原生、大数据、人工智能等技术的崛起,分布式系统对于数据的高效存…

Springer build pdf乱码

在textstudio中编辑时没有错误,在editor manager生成pdf时报错。 首先不要改源文件,着重看你的上传顺序: 将.tex文件,.bst文件,.cls文件,.bib文件, .bbl文件的类型,在editor manager中是Item。…
最新文章