TCP中的三次握手和四次挥手

TCP中的连接和断开可以说是在面试中经常被问到的问题之一,正好有空就总结一下,首先回顾一下TCP的相关知识点

1. TCP的基础知识

1.1 TCP的基本概念

我们知道TCP是运输层的面向连接的可靠的传输协议。面向连接的,指的就是在两个进程发送数据之前,必须先相互“握手”,确保两进程可以进行连接。并且这个传输是点对点的,即一个TCP连接中只有一个发送方和接收方;可靠的,指的是在任何网络情况下,在TCP传输中数据都将完整的发送到接收方。

1.2 TCP的报文段结构

  1. 源端口和目的端口:和UDP一样用于多路复用/分解来自或送到上一层

  2. 序号:一个报文段的序号是整个传送的字节流序列,而不是该报文段的序列

  3. 确认号:主机正在等待的数据的下一个字节序号

  4. 数据偏移:指TCP首部的长度,可变。默认长度为20字节

  5. 窗口:用于流量控制,用于指示接收方愿意接受的字节数量

  6. 标志字段

    • ACK:当该位为1时,确认号有效
    • RST:该位为1时,表示TCP连接中出现异常必须强制断开连接
    • SYC:该位为1时,开始建立连接,并且序号字段进行序列号初始值的设定
    • FIN:该位为1时,断开连接,通信双方相互交换FIN位置为1的TCP段后断开连接

2. TCP连接

2.1 什么是连接(connection)和会话(Session)

连接是数据传输双方的契约,在设计上,连接是一种传输数据的行为,具体来说,数据收发双方的内存中都建立一个用于维护数据传输状态的对象,比如TCP 的连接组成包括一台主机上的缓存、变量和与进程连接的套接字,以及另外一台主机上的缓存、变量和与进程连接的套接字。(由端口号和IP地址组成)所以连接是网络行为状态的记录

会话是应用的行为,比如说你在微信上给人发消息,打开应用聊天窗口和对方聊天是一个会话,但是连接只有在进行发消息、语音的时候连接才开启。其他不发消息和语音时,连接可能暂时断开,但是只要不关聊天窗口,会话时一直存在的。

总结而言,会话是应用层的概念,连接是传输层的概念,正是因为如此,在 TCP 连接的时候需要握手建立连接。

3. TCP连接建立

3.1 TCP 协议中的基本操作

也就是报文段的标志字段的含义和功能:

  • SYN(Synchronization):请求同步,一个 Host 主动向另外一个 Host 发起连接。当 SYN=1,ACK=0 时,表示这是一个请求建立连接的报文段;当 SYN=1,ACK=1 时,表示对方同意建立连接
  • PSH(Push): 数据推送,一个 Host 主动向另外一个 Host 发送数据
  • FIN(Finish): 请求完成,一个 Host 主动断开请求,如果 FIN=1,表示数据已经发送完成,可以释放连接。
  • ACK:表示前面的确认号字段是否有效。ACK=1 时表示有效。只有当 ACK=1 时,前面的确认号字段才有效。TCP 规定,连接建立后,ACK 必须为 1
  • RST:表示是否重置连接。如果 RST=1,说明 TCP 连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。

如图,开始时,两个端口都是出于closed状态,当服务器端口变成listen时,监听端口,是否有数据传来。

  1. 第一步:客户端向服务端发送一个特殊的TCP报文段。客户端进入SYN_SENT状态这个报文段有以下特点:

    • 不包含应用层数据,封装在一个IP数据报中发送给服务器
    • SYN为1(此步是ACK唯一可为0处,其他时间均为1)
    • 序号段有一个随机生成的初始序号(client_isn)
  2. 第二步:服务器端收到上步客户端的报文段后,同时为该TCP连接分配TCP缓存和变量,并向该客户发送允许连接的报文段。服务器进入SYN_RCVD状态,这个报文段特点有:

    • 不包含应用层数据
    • SYN为1,ACK为1
    • 确认号段被置为client_isn + 1,序号段被置为server_isn
  3. 第三步:客户端收到上步服务端的报文段后,客户端为该连接分配缓存和变量,同时客户端向服务器端发送报文段,这个报文端特点有:

    • 可以包含应用层数据
    • SYN为0,ACK为1
    • 确认号段被置为server_isn + 1

    两端进入ESTABLISHED状态,连接建立

4. TCP连接断开

若客户端决定要关闭该连接(服务器端也可以发起关闭)

  1. 第一次:客户端发送带有FIN被置为1的报文段,进入FIN_WAIT_1状态,并等待一个来自服务器的带有确认的TCP报文段。
  2. 第二次:服务器端收到该报文段后,向客户端发送一个确认ACK报文段,进入CLOSE_WAIT状态。
  3. 第三次:服务器端处理完数据后向客户端发送FIN被置为1的报文段,进入LAST_ACK状态。
  4. 第四次:客户端收到服务器端的FIN报文段后,向服务器端发送一个确认ACK报文段,进入TIME_WAIT状态,服务器接收到该ACK报文段后关闭,客户端在经过2MSL(与具体实现有关,典型值是20s、1分钟或2分钟)等待后关闭。

5. 关于TCP连接的面试题

5.1 如何唯一确定一个TCP连接

可以通过四个变量来确定唯一的TCP连接:源地址、源端口、目标地址、目标端口来唯一确定一个TCP连接。其中源地址和目标地址的字段在IP头部,作用是通过IP协议发送报文给哪个主机;源端口和目标端口是在TCP首部,作用是通过TCP协议发送主机中的哪个进程。

5.2 UDP和TCP有什么区别

两者的区别
  • UDP面向无连接,利用IP提供无连接的传输数据服务
  • UDP可以支持一对多、一对一、多对多的交互通信
  • UDP不保证可靠交付数据,传输过程中可能会丢包
  • UDP首部只有固定的8字节;TCP首部最短20字节,能够变化
应用场景
  • UDP用于包总量较少的通信,如DNS、SNMP;还有视频、音频等多媒体通信,以及广播通信等等
  • TCP用于需要保证可靠性数据交付的场景,比如FTP、HTTP

5.3 为什么是三次握手?

为什么TCP连接建立过程中不是两次或者四次,三次就是最优解了吗?首先来看看两次握手建立连接会发生什么。

两次握手

如果连接过程是两次握手来建立,在理想的网络环境下是可以完成通信建立的,但是现实的网络环境很复杂,有时候会导致历史的报文段比新的报文段先到达服务器端,这时,如果没有第三次握手,就会造成无法同步序列号情况的发生。举个例子,客户端发送新SYN报文段的序号是100,网络环境中有旧的SYN报文端的序号是80,然而现在旧的先到达服务器端,那么服务器端则会返回一个确认号为81的SYN+ACK报文段,这个时候客户端接收到的报文段和预期报文段会不一致,就会造成无法同步序列号,达不到TCP可靠运输的效果,也会浪费资源。那么如果有第三次握手,这时客户端会反馈一个RST报文段,终止这次连接,等待新的SYN到来,这样保证数据的可靠性传输。

四次握手

四次握手可以对比四次挥手,客户端和服务器端都要分别发送SYN和ACK报文段,来表示之前的SYN报文已经被成功接收。

然而四次握手可以简化成三次,第二、三次可以优化成一次。所以三次是保证可靠性传输连接的最优解。

5.4 什么是SYN 泛洪?如何避免

SYN泛洪攻击通过发送大量的TCP SYN报文段,而不完成第三次握手的步骤。因为大量的SYN报文段的发送,服务器不断为这些半开连接分配资源,导致服务器的连接资源被消耗殆尽。

如何避免,现在有一种有效的防御系统,称为SYN cookie,它是这样工作的:

  • 当服务器接收到一个SYN报文段时,它并不知道该报文段是来自一个合法用户还是SYN泛洪攻击的一部分。因此服务器不会为该报文段生成一个半开连接。相反,服务器会生成一个初始TCP序列号cookie值(由目的IP地址与端口号以及仅有该服务器知道的秘密数的一个复杂函数),并发送给客户端
  • 如果客户是合法的,将会返回一个ACK报文段。而且当服务器收到该ACK后,需要验证该ACK是与前面发送的SYN相对应,并生成一个具有套接字的全开的连接。如果没有返回一个ACK报文段,则初始的SYN并没有对服务器产生危害,因为服务器也没为它分配任何资源。

5.5 为什么是四次挥手

四次挥手中双方发送了FIN报文段,所以在客户端发送FIN后,服务器端接收到后首先会回一个ACK应答报文,因为此时服务器端可能还有数据没发送完,所以在服务端数据处理完后,才发送FIN报文段给客户端表示现在可以关闭连接。正是因为这个等待过程,使得比三次握手多一次。

5.6 如果已经建立了连接,客户端出现故障了怎么办?

TCP有一个机制是保活机制:定义在一个时间段内,如果没有任何连接相关的活动,TCP保活机制则开始作用,每隔一个时间间隔会发送一个探测报文,该探测报文包含的数据很少,如果连续几个探测报文都没有得到响应,说明该TCP连接已经死亡。

客户端的故障也分为这几种:

  • 对端系统正常回复探测报文,TCP保活时间重置,等待下一个保活时间到来,TCP连接正常运行。
  • 对端程序崩溃并重启,此时可以对探测报完进行响应,但是没有连接的有效消息,序列不符合,最后会产生RST报文,这时连接被重置。
  • 对端程序彻底崩溃,无法响应探测报,经过几次连续无响应后TCP会报告此连接已经死亡

5.7 为什么需要TIME_WAIT状态

首先要说明,只有主动发起关闭连接的一方才会有TIME_WAIT状态,那么为什么会有TIME_WAIT状态,这时因为在服务端关闭后,可能还会有其他的数据报未到达客户端,所以需要再等待一段时间。一般这个时间是2MSL时间,也就是报文段在两端传输的最大往返时间。

TIME_WAIT状态太多也会导致占用过多的端口资源,会导致无法创建新的连接

参考博客:

https://mp.weixin.qq.com/s/tH8RFmjrveOmgLvk9hmrkw

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/284615.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django开发3

Django开发3 Django开发编辑用户9.靓号管理9.1 表结构9.2 靓号列表9.3 新建靓号9.4 编辑靓号9.5 搜索手机号9.6 分页 10.时间插件11.ModelForm和BootStrap操作 各位小伙伴想要博客相关资料的话关注公众号:chuanyeTry即可领取相关资料! Django开发 部门管…

Oracle 拼接字符串

语法 使用||拼接如果内容中有单引号,则可在该单引号前面再加一个单引号进行转义 例子 比如有一个业务是根据需要生成多条插入语句 select insert into des_account_des_role(des_account_id, roles_id) values( || id || , || (select id from des_role where wo…

计算机科学速成课【学习笔记】(2)——电子计算机

本集课程B站链接 2. 电子计算机-Electronic Computing_哔哩哔哩_bilibili2. 电子计算机-Electronic Computing是【计算机科学速成课】[40集全/精校] - Crash Course Computer Science的第2集视频,该合集共计40集,视频收藏或关注UP主,及时了…

docker Mysql-udf-http

1.Mysql-udf-http镜像已上传到dockerhub中 docker pull heidaodageshiwo/mysql-udf-http:v1 2.启动镜像(默认密码root1234) docker run -tid -p 3306:3306 --namemysql-udf-http --privilegedtrue heidaodageshiwo/mysql-udf-http:v1 3.命令 [rootlocalhost ~]# docker im…

推荐系统中 排序策略 CTR 动态加权平均法

CTR(Click-Through Rate)动态加权平均法是一种用于计算广告点击率的方法,其中每个点击率被赋予一个权重,这个权重可以随着时间、事件或其他因素而动态调整。这种方法旨在更灵活地反映广告点击率的变化,使得最近的数据更…

mysql基础-表操作

环境: 管理工具:Navicat 数据库版本:5.7.37 mysql的版本,我们可以通过函数,version()进行查看,本次使用的版本如下: 目录 1.管理工具 1.1创建表 1.2.修改表名 1.3.复制表 1.4.删除表 2…

电脑怎么设置代理IP上网?如何隐藏自己电脑的真实IP?

在现代互联网中,代理IP已成为许多用户保护隐私和上网安全的重要手段。通过设置代理IP,用户可以隐藏自己的真实IP地址,提高上网的安全性,同时保护个人信息不被泄露。本文将详细介绍如何设置代理IP上网以及如何隐藏电脑的真实IP地址…

iToF人脸识别

iToF(间接飞行时间)是一种测量光飞行时间的技术,主要应用于人脸识别。 iToF人脸识别技术在哪些场景下会用到 iToF人脸识别技术可以应用于许多场景,以下是一些常见的应用场景: 平安城市:在城市监控系统中,iToF人脸识别技术可以用于实时监控、目标检测和识别,以及异常行为…

SpringBoot 请求参数

文章目录 一、简单参数实体参数数组集合参数日期参数Json参数路径参数 一、简单参数 原始方式 在原始的web程序中,获取请求参数,需要通过HttpServletRequest 对象手动获取。 SpringBoot方式 1.参数名与形参变量名相同,定义形参即可接收参数。…

Pandas教程(四)—— 分层索引及数据联合

1.分层索引 分层索引就是在一个轴上拥有多个(两个及以上)索引级别,能以低维度形式处理高维度数据。 行索引有两层 1.1 分层索引的创建 1.1.1 方式一:直接设置 1)在创建series、dataframe或读取文件时时,行…

简单FTP客户端软件开发——VMware安装Linux虚拟机(命令行版)

VMware安装包和Linux系统镜像: 链接:https://pan.baidu.com/s/1UwF4DT8hNXp_cV0NpSfTww?pwdxnoh 提取码:xnoh 这个学期做计网课程设计【简单FTP客户端软件开发】需要在Linux上配置 ftp服务器,故此用VMware安装了Linux虚拟机&…

【css】实现渐变文字效果(linear-gradientradial-gradient)

效果图 实现方法 关键代码: background: linear-gradient(0deg,#d3ae13 0%,white 44%);-webkit-background-clip: text;-webkit-text-fill-color: transparent;注释掉:-webkit-background-clip: text;这行之后,下图就是待叠加的样式。&#…

【BIG_FG_CSDN】C++ 数组与指针 (个人向——学习笔记)

一维数组 在内存占用连续存储单元的相同类型数据序列的存储。 数组是静态存储器的块;在编译时确定大小后才能使用; 其声明格式如下: 元素类型 数组名[常量];元素类型:数组中元素的数据类型; 常量&#…

vue+ts element-plu是页码器根据屏幕宽度变化,解决刷新后初始化值问题

实现思路&#xff1a;组件挂载后执行初始化操作&#xff0c;初始化添加事件监听器&#xff0c;当浏览器窗口大小发生变化时会调用这个函数handleResize <el-pagination v-model:current-page"currentPage" background :total"total" layout"prev,…

信号与线性系统翻转课堂笔记20——系统函数与信号流图

信号与线性系统翻转课堂笔记20——系统函数与信号流图 The Flipped Classroom20 of Signals and Linear Systems 对应教材&#xff1a;《信号与线性系统分析&#xff08;第五版&#xff09;》高等教育出版社&#xff0c;吴大正著 一、要点 &#xff08;1&#xff09;了解信…

C++多态性——(1)初识多态

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 苦难和幸福一样&#xff0c;都是生命盛…

2024.1.1每日一题

LeetCode每日一题 新的一年开始了&#xff0c;祝大家新年快乐&#xff0c;坚持做每日一题。 1599.经营摩天轮的最大利润 1599. 经营摩天轮的最大利润 - 力扣&#xff08;LeetCode&#xff09; 题目描述 你正在经营一座摩天轮&#xff0c;该摩天轮共有 4 个座舱 &#xff0…

RK3568平台 Android13 GKI架构开发方式

一.GKI简介 GKI&#xff1a;Generic Kernel Image 通用内核映像。 Android13 GMS和EDLA认证的一个难点是google强制要求要支持GKI。GKI通用内核映像&#xff0c;是google为了解决内核碎片化的问题&#xff0c;而设计的通过提供统一核心内核并将SoC和板级驱动从核心内核移至可加…

Go语言实战:如何使用Timeout Context优雅地取消任务

Go语言实战&#xff1a;如何使用Timeout Context优雅地取消任务 引言Go语言和并发编程简介什么是ContextTimeout Context的原理实战演示最佳实践和注意事项总结 引言 在现代软件开发中&#xff0c;尤其是在处理高并发系统时&#xff0c;正确地管理和取消正在进行的任务成为一项…

电子电器架构(E/E)演化 —— 车载以太网

电子电器架构&#xff08;E/E&#xff09;演化 —— 车载以太网 我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 本文13000字。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一…