C++力扣题目222--完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树

思路

本篇给出按照普通二叉树的求法以及利用完全二叉树性质的求法。

#普通二叉树

首先按照普通二叉树的逻辑来求。

这道题目的递归法和求二叉树的深度写法类似, 而迭代法,二叉树:层序遍历登场! (opens new window)遍历模板稍稍修改一下,记录遍历的节点数量就可以了。

递归遍历的顺序依然是后序(左右中)。

#递归

如果对求二叉树深度还不熟悉的话,看这篇:二叉树:看看这些树的最大深度 (opens new window)。

  1. 确定递归函数的参数和返回值:参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。

代码如下:

int getNodesNum(TreeNode* cur) {

  1. 确定终止条件:如果为空节点的话,就返回0,表示节点数为0。

代码如下:

if (cur == NULL) return 0;

  1. 确定单层递归的逻辑:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。

代码如下:

int leftNum = getNodesNum(cur->left);      // 左
int rightNum = getNodesNum(cur->right);    // 右
int treeNum = leftNum + rightNum + 1;      // 中
return treeNum;

所以整体C++代码如下:

// 版本一
class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == NULL) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};

代码精简之后C++代码如下:

// 版本二
class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == NULL) return 0;
        return 1 + countNodes(root->left) + countNodes(root->right);
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(log n),算上了递归系统栈占用的空间

网上基本都是这个精简的代码版本,其实不建议大家照着这个来写,代码确实精简,但隐藏了一些内容,连遍历的顺序都看不出来,所以初学者建议学习版本一的代码,稳稳的打基础

#迭代

如果对求二叉树层序遍历还不熟悉的话,看这篇:二叉树:层序遍历登场! (opens new window)。

那么只要模板少做改动,加一个变量result,统计节点数量就可以了

class Solution {
public:
    int countNodes(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

#完全二叉树

以上方法都是按照普通二叉树来做的,对于完全二叉树特性不了解的同学可以看这篇 关于二叉树,你该了解这些! (opens new window),这篇详细介绍了各种二叉树的特性。

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1)  个节点。

大家要自己看完全二叉树的定义,很多同学对完全二叉树其实不是真正的懂了。

我来举一个典型的例子如题:

完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

完全二叉树(一)如图: 

222.完全二叉树的节点个数

完全二叉树(二)如图: 

222.完全二叉树的节点个数1

可以看出如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。

这里关键在于如何去判断一个左子树或者右子树是不是满二叉树呢?

在完全二叉树中,如果递归向左遍历的深度等于递归向右遍历的深度,那说明就是满二叉树。如图:

在完全二叉树中,如果递归向左遍历的深度不等于递归向右遍历的深度,则说明不是满二叉树,如图:

那有录友说了,这种情况,递归向左遍历的深度等于递归向右遍历的深度,但也不是满二叉树,如题:

如果这么想,大家就是对 完全二叉树理解有误区了,以上这棵二叉树,它根本就不是一个完全二叉树

判断其子树是不是满二叉树,如果是则利用公式计算这个子树(满二叉树)的节点数量,如果不是则继续递归,那么 在递归三部曲中,第二部:终止条件的写法应该是这样的:

if (root == nullptr) return 0; 
// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) {  // 求左子树深度
    left = left->left;
    leftDepth++;
}
while (right) { // 求右子树深度
    right = right->right;
    rightDepth++;
}
if (leftDepth == rightDepth) {
    return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,返回满足满二叉树的子树节点数量
}

递归三部曲,第三部,单层递归的逻辑:(可以看出使用后序遍历)

int leftTreeNum = countNodes(root->left);       // 左
int rightTreeNum = countNodes(root->right);     // 右
int result = leftTreeNum + rightTreeNum + 1;    // 中
return result;

该部分精简之后代码为:

return countNodes(root->left) + countNodes(root->right) + 1; 

最后整体C++代码如下:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};
  • 时间复杂度:O(log n × log n)
  • 空间复杂度:O(log n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/319835.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

目标检测-One Stage-YOLOv7

文章目录 前言一、YOLOv7的不同版本二、YOLOv7的网络结构二、YOLOv7的创新点三、创新点的详细解读ELAN和E-ELANBoF训练技巧计划型重参化卷积辅助训练模块标签分配Lead head guided label assignerCoarse-to-fine lead head guided label assigner 基于级联模型的复合缩放方法 总…

面试官问,如何在十亿级别用户中检查用户名是否存在?

面试官问&#xff0c;如何在十亿级别用户中检查用户名是否存在&#xff1f; 前言 不知道大家有没有留意过&#xff0c;在使用一些app注册的时候&#xff0c;提示你用户名已经被占用了&#xff0c;需要更换一个&#xff0c;这是如何实现的呢&#xff1f;你可能想这不是很简单吗…

java获取已经发送谷歌邮件的打开状态

1.前言 现在网上的方案都是在邮件里面插入一张图片的地址&#xff0c;当收件人打开之后&#xff0c;就会发送请求到指定路径的服务器上&#xff0c;然后在请求的controller里面处理邮件的状态&#xff0c;这个方案确实是行得通的&#xff0c;本文章只是给大家避个坑&#xff0…

从传统训练到预训练和微调的训练策略

目录 前言1 使用基础模型训练手段的传统训练策略1.1 随机初始化为模型提供初始点1.2 目标函数设定是优化性能的关键 2 BERT微调策略: 适应具体任务的精妙调整2.1 利用不同的representation和分类器进行微调2.2 通过fine-tuning适应具体任务 3 T5预训练策略: 统一任务形式以提高…

Vue学习计划-Vue3--核心语法(七)pinia

pinia案例gitee地址 1. pinia 准备一个效果 【搭建 pinia 环境】 安装pinia: npm install pinia/yarn add pinia第二步&#xff1a;操作src/main.ts import { createApp } from vue import App from ./App.vue/* 引入createPinia&#xff0c;用于创建pinia */ import { crea…

阿里云优惠券介绍、种类、领取入口及使用教程

阿里云优惠券是阿里云提供的一种优惠活动&#xff0c;旨在帮助用户节省购买云服务产品的费用。本文将为大家详细介绍阿里云优惠券的相关信息&#xff0c;包括优惠券的介绍、种类、领取入口以及使用教程。 一、阿里云优惠券介绍 阿里云优惠券是阿里云提供给用户的一种优惠凭证&…

vue前端开发自学,异步加载组件,提升用户端的客户体验度

vue前端开发自学,异步加载组件,提升用户端的客户体验度&#xff01;现实项目开发时&#xff0c;组件的数量非常庞大&#xff0c;如果都是一口气加载完&#xff0c;对手机用户来说&#xff0c;体验度会很差。因此&#xff0c;非常有必要使用异步加载。 那就是&#xff0c;用到了…

Neo4j知识图谱(2)创建与删除

Neo4j - CQL简介_w3cschoolhttps://www.w3cschool.cn/neo4j/neo4j_cql_introduction.html一、创建节点 create(n:Person{name:何仙鸟,age:21}) create就是创建&#xff0c;无论是点还是边都是用create来创建 n相当于一个别名&#xff0c;比如创建一个Person&#xff0c;而Pe…

React16源码: React中的schedule调度整体流程

schedule调度的整体流程 React Fiber Scheduler 是 react16 最核心的一部分&#xff0c;这块在 react-reconciler 这个包中这个包的核心是 fiber reconciler&#xff0c;也即是 fiber 结构fiber 的结构帮助我们把react整个树的应用&#xff0c;更新的流程&#xff0c;能够拆成…

JVM基础(10)——老年代调优

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…

[ACM算法学习] 诱导排序与 SA-IS算法

学习自诱导排序与SA-IS算法 - riteme.site 为了简化一些操作&#xff0c;定义 # 是字典序最小的字符&#xff0c;其字典序小于字母集里任意字符&#xff0c;并且将其默认作为每个字符串的最后一个字符&#xff0c;即作 S[|S|] SA-IS 算法 SA-IS 算法是基于诱导排序这种思想。…

Python基础知识:整理14 利用pyecharts生成地图

1 地图可视化的基本使用 from pyecharts.charts import Map from pyecharts.options import VisualMapOpts # 准备地图对象 map Map()# 准备数据 data [("北京市", 8), ("上海市", 99), ("广州省", 199), ("重庆市", 400), ("…

JavaScript学习笔记——变量、作用域、var、const和let

JavaScript学习笔记——变量、作用域、var、const和let 学习链接&#xff08;原链接&#xff09;变量变量声明的三种方式 作用域作用域介绍作用域分类全局作用域局部作用域&#xff08;函数作用域&#xff09;块级作用域块级作用域和局部(函数)作用域区别 varvar的作用域(全局函…

在数据中查找峰值

使用 findpeaks 函数求出一组数据中局部最大值的值和位置。 文件 spots_num 包含从 1749 年到 2012 年每年观测到的太阳黑子的平均数量。求出最大值及其出现的年份。将它们与数据一起绘制出来。 load("spots_num")[pks,locs] findpeaks(avSpots);plot(year,avSpots…

ssm基于vue的儿童教育网站的设计与实现论文

摘 要 传统信息的管理大部分依赖于管理人员的手工登记与管理&#xff0c;然而&#xff0c;随着近些年信息技术的迅猛发展&#xff0c;让许多比较老套的信息管理模式进行了更新迭代&#xff0c;视频信息因为其管理内容繁杂&#xff0c;管理数量繁多导致手工进行处理不能满足广大…

【26 预处理详解】

目录 预定义符号#define定义常量#define定义宏带有副作用的宏参数宏替换的规则宏函数的对比#和##命名约定#undef命令行定义条件编译头文件的包含其他预处理指令 1. 预定义符号 c语言设置了一些预定义符号&#xff0c;可以直接使用&#xff0c;预定义符号也是在预处理期间处理…

响应式编程初探-自定义实现Reactive Streams规范

最近在学响应式编程&#xff0c;这里先记录下&#xff0c;响应式编程的一些基础内容 1.名词解释 Reactive Streams、Reactor、WebFlux以及响应式编程之间存在密切的关系&#xff0c;它们共同构成了在Java生态系统中处理异步和响应式编程的一系列工具和框架。 Reactive Streams…

ruoyi后台管理系统部署-1-安装JDK

CentOS 7 安装JDK 1. 最简单方法 部署JDK最简单的方法是使用&#xff1a;yum 首先查看原服务器有没有安装 jdk # 没有输出 java -version yum list installed | grep javayum 安装 查看可供安装的jdk&#xff1a; yum search java | grep jdk yum -y list java*应该输出一堆…

C#无标题栏窗体拖动代码

文章目录 一、概念二、案例三、常见问题四、链接 一、概念 C#&#xff08;C Sharp&#xff09;是由微软公司开发的一种面向对象的编程语言。它是从C和C语言演化而来的&#xff0c;并结合了Java和其他编程语言的特性。C#是微软.NET平台的一部分&#xff0c;允许开发人员创建各种…

超强站群系统v9.0:最新蜘蛛池优化技术,一键安装,内容无缓存刷新,高效安全

安全、高效&#xff0c;化的优化利用php性能&#xff0c;使得运行流畅稳定 独创内容无缓存刷新不变&#xff0c;节省硬盘。防止搜索引擎识别蜘蛛池 蜘蛛池算法&#xff0c;轻松构建站点&#xff08;电影、资讯、图片、论坛等等&#xff09; 可以个性化每个网站的风格、内容、…
最新文章