imgaug库指南(23):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(11):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性高斯噪声(AdditiveGaussianNoise方法)
imgaug库指南(12):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)
imgaug库指南(13):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性泊松噪声(AdditivePoissonNoise方法)
imgaug库指南(14):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(Multiply方法)
imgaug库指南(15):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(MultiplyElementwise方法)
imgaug库指南(16):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Cutout方法
imgaug库指南(17):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout方法
imgaug库指南(18):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— CoarseDropout方法
imgaug库指南(19):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout2D方法
imgaug库指南(20):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— TotalDropout方法
imgaug库指南(21):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— ReplaceElementwise方法
imgaug库指南(22):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— ImpulseNoise方法

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— SaltAndPepper方法


SaltAndPepper方法

功能介绍

iaa.SaltAndPepperimgaug库中的一个方法,用于在图像中添加椒盐噪声。椒盐噪声是数字图像处理中常见的一种噪声类型,表现为随机出现的黑白像素点。其中“盐”指的是白色的噪声点(像素值设置为最大值),而“椒”指的是黑色的噪声点(像素值设置为最小值)。iaa.SaltAndPepper方法模拟了这种噪声,可以应用于多种场景中。以下是三个具体的使用场景举例:

  1. 数据增强:在深度学习和机器学习中,为了提高模型的泛化能力,通常需要对训练数据进行增强。通过添加椒盐噪声,可以增加训练数据的多样性,使模型能够学习处理噪声干扰的情况。这有助于提高模型在实际应用中的鲁棒性和稳定性。

  2. 模拟真实世界条件:在真实世界中,图像往往会受到各种噪声的干扰,包括椒盐噪声。通过使用iaa.SaltAndPepper方法,可以在图像中添加这种噪声,从而模拟真实世界中的图像条件。这对于测试和验证图像处理算法或计算机视觉系统在真实环境中的性能非常有用。

  3. 图像质量评估:在图像处理和计算机视觉领域,评估图像质量是一个重要的任务。通过添加椒盐噪声,可以模拟图像质量下降的情况,并评估不同算法或技术对噪声的鲁棒性。这有助于比较不同方法在处理噪声图像时的性能,并为实际应用中选择最佳的图像处理算法提供参考。

语法

import imgaug.augmenters as iaa
aug = iaa.SaltAndPepper(p=(0.0, 0.03), per_channel=False, seed=None, name=None, random_state='deprecated', deterministic='deprecated')

以下是对iaa.SaltAndPepper方法中各个参数的详细介绍:

  1. p

    • 类型:可以是浮点数|浮点数元组|浮点数列表。
    • 描述:将像素替换为椒盐噪声的概率。。
      • p为浮点数,则表示将像素替换为椒盐噪声的概率;
      • p为元组(a, b),则将像素替换为椒盐噪声的概率为从区间[a, b]中采样的随机数;
      • p为列表,则将像素替换为椒盐噪声的概率为从列表中随机采样的浮点数;
  2. per_channel

    • 类型:布尔值(TrueFalse)|浮点数。
    • 描述
      • per_channelTrue,则RGB图像的每个像素位置所对应的三个通道像素值可能不会同时替换为椒盐噪声 ==> RGB图像会出现彩色失真;
      • per_channelFalse,则RGB图像的每个像素位置所对应的三个通道像素值会同时替换为椒盐噪声;
      • per_channel为区间[0,1]的浮点数,假设per_channel=0.6,那么对于60%的图像,per_channelTrue;对于剩余的40%的图像,per_channelFalse
  3. seed

    • 类型:整数|None
    • 描述:用于设置随机数生成器的种子。如果提供了种子,则结果将是可重复的。默认值为None,表示随机数生成器将使用随机种子。
  4. name

    • 类型:字符串或None
    • 描述:用于标识增强器的名称。如果提供了名称,则可以在日志和可视化中识别该增强器。默认值为None,表示增强器将没有名称。

示例代码

  1. 使用不同的p
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建数据增强器
aug1 = iaa.SaltAndPepper(p=0.1, per_channel=False, seed=0)
aug2 = iaa.SaltAndPepper(p=0.3, per_channel=False, seed=0)
aug3 = iaa.SaltAndPepper(p=0.5, per_channel=False, seed=0)

# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化(使用不同的p参数)

可以从图1看到:当p参数设置的越接近1.0时,图像增强后的新图像将会出现更多的椒盐噪声。


  1. per_channel设置为True
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建数据增强器
aug1 = iaa.SaltAndPepper(p=0.1, per_channel=True, seed=0)
aug2 = iaa.SaltAndPepper(p=0.3, per_channel=True, seed=0)
aug3 = iaa.SaltAndPepper(p=0.5, per_channel=True, seed=0)

# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化(使用不同的p参数,且per_channel设置为True)

可以从图2看到:当per_channel设置为True时,图像增强后的新图像将会出现彩色失真。

注意事项

  1. p的选择p参数决定了一副图像椒盐噪声的强度。较大的p值可能会导致新图像出现严重失真。需要根据具体场景选择合适的p
  2. 随机性和可复现性(seed):如果需要可复现的结果,应该设置seed参数为一个固定的整数值。这将初始化随机数生成器,使得每次运行增强操作时都能得到相同的结果;
  3. 与其他增强操作的组合iaa.SaltAndPepper可以与其他imgaug增强操作组合使用,以创建更复杂的增强管道。在组合多个增强操作时,应注意它们的顺序,因为不同的顺序可能会导致不同的最终效果。

总结

iaa.SaltAndPepperimgaug图像处理库中的一个非常有用的方法,它允许用户模拟椒盐噪声并应用到图像上。椒盐噪声是一种常见的数字图像噪声,其中像素被随机替换为最大值(白色,即“盐”)或最小值(黑色,即“椒”)。

iaa.SaltAndPepper方法的主要特点和用途如下:

特点

  1. 概率控制:通过p参数,用户可以精确控制每个像素被替换为盐或椒的概率,从而实现不同程度的噪声干扰。

  2. 通道独立性:通过per_channel参数,可以选择是否对每个颜色通道独立地应用噪声,这在处理彩色图像时尤为重要。

  3. 随机性管理:虽然方法本身是随机的,但用户可以通过设置seed参数来控制随机数生成器,确保增强过程的可重复性。

  4. 易于集成iaa.SaltAndPepper可以轻松地与其他imgaug增强器结合使用,构建复杂的图像增强管道。

用途

  1. 数据增强:在机器学习和深度学习中,iaa.SaltAndPepper常被用于数据增强,以增加训练集的多样性,提高模型对噪声和异常值的鲁棒性。

  2. 模拟真实场景:在模拟现实世界的图像条件时,添加椒盐噪声可以帮助评估算法在实际应用中处理噪声数据的能力。

  3. 算法测试:在图像处理和计算机视觉研究中,椒盐噪声常用于测试算法的稳定性和性能。

  4. 图像质量评估:通过向图像中添加可控的噪声,可以评估不同图像处理算法在降噪方面的效果。

总体而言,iaa.SaltAndPepper是一个强大且灵活的工具,适用于各种需要添加椒盐噪声的图像处理任务。


小结

imgaug是一个顶级的图像增强库,具备非常多的数据增强方法。它为你提供创造丰富多样的训练数据的机会,从而显著提升深度学习模型的性能。通过精心定制变换序列和参数,你能灵活应对各类应用场景,使我们在处理计算机视觉的数据增强问题时游刃有余。随着深度学习的持续发展,imgaug将在未来持续展现其不可或缺的价值。因此,明智之举是将imgaug纳入你的数据增强工具箱,为你的项目带来更多可能性。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/321594.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

抖音矩阵云混剪系统源码多平台多账号一站式管理(免授权版)

抖音矩阵云混剪系统源码 短视频矩阵营销系统V2.2.1(免授权版) 中网智达矩阵营销系统多平台多账号一站式管理,一键发布作品。智能标题,关键词优化,排名查询,混剪生成原创视频,账号分组,意向客户自动采集,智能回复,多账号评论聚合回复,免切换,免登陆发布….助力您在…

Altium开源硬件

1、FMC ADC 250M 16B 4CHA 2、VME FMC Carrier VFC 3、armadillo 4、FMC DEL 1ns 4cha 5、FMC Carrier tester 6、FMC ADC 1G 8b 2cha 7、HiCCE-FMC-128 8、FMC ADC 130M 16b 4cha 9、VME ADC 250k 16b 36cha 10、FMC DIO 32ch TTL a 11、FMC DAC 600M 12b 1cha DD…

【前端框架】Vue2合集

一、Vue快速上手 1、Vue概念 vue 是一个用于构建用户界面的渐进式框架&#xff0c;由数据驱动 vue 的两种使用方式 vue 核心包开发&#xff1a;局部模块改造vue 核心包与 vue 插件 工程化开发&#xff1a;整站 开发 2、 创建实例 1、准备容器 <div id"app"&…

腾讯云把向量数据库“卷”到哪一步了?

“不是我不明白&#xff0c;这世界变化快”&#xff0c;崔健在20世纪写下的这句歌词&#xff0c;放在刚刚过去的2023年&#xff0c;也同样适用。技术风向的变化之快&#xff0c;让不少人感到惊讶&#xff0c;向量数据库这一年的潮起潮落&#xff0c;就是一个典型的例子。 2023年…

文本编码转换:如何从UTF8到ANSI的批量处理技巧

在处理文本文件时&#xff0c;经常会遇到不同编码格式的问题。不同的编码会导致文件在打开或显示时出现乱码。UTF-8和ANSI是两种常见的编码格式。现在一起来看“办公提效工具”如何从UTF-8批量转换到ANSI编码的操作。 文本编码UTF-8未修改前的截图展示。 批量转换ANSI编码的方…

电子学会C/C++编程等级考试2023年09月(五级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:红与黑 有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。 时间限制:1000 内存限制:65536 输入 包括多…

Codeforces Round 779 (Div. 2) D2. 388535(思维题 二进制性质/trie树上最大最小异或)

题目 t(t<1e5)组样例&#xff0c;每次给定l,r(0<l<r<2^17) 和r-l1个数ai&#xff0c;新序列是被[l,r]这些数异或上同一个x得到的&#xff0c; 求出x&#xff0c;有多个输出任意一个即可 思路来源 官方题解 洛谷题解 Educational Codeforces Round 157 (Rated…

MetaGPT学习笔记 - task1task2

章节&#xff1a;task1&task2 一.github地址&#xff1a;github.com/geekan/MetaGPT 二.MetaGPT: 多智能体框架​ 使 GPT 以软件公司的形式工作&#xff0c;协作处理更复杂的任务 MetaGPT输入一句话的老板需求&#xff0c;输出用户故事 / 竞品分析 / 需求 / 数据结构 / A…

流星全自动网页生成系统重构版源码

流星全自动网页生成系统重构版源码分享&#xff0c;所有模板经过精心审核与修改&#xff0c;完美兼容小屏手机大屏手机&#xff0c;以及各种平板端、电脑端和360浏览器、谷歌浏览器、火狐浏览器等等各大浏览器显示。 为用户使用方便考虑&#xff0c;全自动网页制作系统无需繁琐…

分布式任务调度平台XXL-JOB使用(二)

说明&#xff1a;之前总结过在CentOS系统里使用XXL-JOB。但在代码开发阶段&#xff0c;我们有时需要在本地环境测试定时任务代码&#xff0c;本文介绍如何在Windows系统使用XXL-JOB。 下载 &#xff08;1&#xff09;下载代码&#xff0c;解压打开 首先&#xff0c;去Github…

新手入门Java数组排序及二维数组(有练习)

第七章 二维数组 课前回顾 1.数组的定义方式都有哪几种 数据类型[] 数组名; 数组名 new 数据类型[数组的长度];数据类型[] 数组名 new 数据类型[数组的长度];数据类型[] 数组名 {数组的元素1,数组的元素2,...数组的元素n};//只能在定义数组时直接赋值的时候使用数据类型[…

HTML--CSS--图片和背景样式

图片样式 图片大小 最基本的应该就是对大小的管理 width:像素值; 宽度 height:像素值; 高度 <!DOCTYPE html> <html> <head> <title>这是一个标题</title><meta charset"utf-8"/><style>img{width: 300px;height: 300px…

从零开始的OpenGL光栅化渲染器构建2-冯式光照

冯式光照的构成 冯式光照模型(Phong Lighting Model)的主要结构由三个分量组成&#xff1a;环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照。 环境光 把环境光照添加到场景里非常简单。我们用光的颜色乘以一个很小的常量环境因子&#xff0c;再乘以物体的颜色&#xf…

【矩阵快速幂】封装类及测试用例及样例

作者推荐 视频算法专题 通俗的说&#xff0c;就是矩阵的乘方。 封装类 核心代码 class CMat { public:// 矩阵乘法static vector<vector<long long>> multiply(const vector<vector<long long>>& a, const vector<vector<long long>…

模拟器安装XPosed框架教程

Xposed框架下载&#xff08;搞不懂就先看完本篇教程再下载&#xff09; 99%的情况只需要下载里面的XPosed鸭就行了 安卓8及以下XPosed框架 - 多开鸭模拟器安装XPosed框架图文视频教程 关于本站XPosed框架的说明 XPosed框架(即XP框架)&#xff0c;由rovo89开发。适用于安卓7以…

任务6:启动Hadoop集群并测试

任务描述 知识点&#xff1a; 掌握Hadoop集群的启动 重 点&#xff1a; Hadoop集群的格式化流程Hadoop集群的启动流程 内 容&#xff1a; 格式化Hadoop集群启动测试Hadoop集群 任务指导 启动Hadoop集群并测试&#xff0c;过程如下&#xff1a; 初始化HDFS&#xff1…

C++面试宝典第19题:最长公共前缀

题目 编写一个函数来查找字符串数组中的最长公共前缀,如果不存在公共前缀,返回空字符串""。说明:所有输入只包含小写字母a-z。 示例1: 输入: ["flower", "flow", "flight"]输出: "fl" 示例2: 输入: ["dog",…

指针面试题详解

文章目录 指针笔试题解析笔试题1笔试题2笔试题3笔试题4笔试题5笔试题6笔试题7笔试题8 总结 指针笔试题解析 数组名是首元素地址,两种情况除外: 1.sizeof(数组名) , 这是这是计算整个数组的大小,单位是字节; 2.&数组名 , 得出的是整个数组的地址; 笔试题1 #include<st…

学习Vue配置代理总结

今天学习了Vue的配置代理&#xff0c;当我们想要向服务器取回来数据时就先要向服务器发送请求&#xff0c;但前端发送请求的方式也有很多种&#xff0c;首先是发送请求的鼻祖JS的XMLHttpRequest&#xff08;xhr&#xff09;&#xff0c;它操作起来相对麻烦&#xff0c;开发中也…

基于STM32的CMT液晶屏控制器驱动程序设计与优化

本文以STM32微控制器为基础&#xff0c;设计并优化了一个用于控制CMT液晶屏的驱动程序。在设计过程中&#xff0c;我们首先介绍了液晶屏的基本工作原理&#xff0c;包括CMT液晶屏的结构和信号传输机制。然后&#xff0c;我们详细讨论了STM32微控制器的GPIO、SPI和DMA模块的特性…