浅入浅出Java锁

前提

做分布式爬虫时,结合已有的架构,直接对某网站的详情页进行了爬取;尴尬的是,某网站需先采集列表页,之后才能采集详情页;这种防爬手段使用了用户行为监控,行为异常的访问直接就给屏蔽了。

在这里插入图片描述

在这里插入图片描述

对于这种情况,既要满足分布式的性能要求,又要模拟合理的用户行为,程序中就要对列表页的访问加锁。这就有了今天的分享主题:Java 锁。

  • 乐观锁和悲观锁
  • 独占锁和共享锁
  • 互斥锁和读写锁
  • 公平锁和非公平锁
  • 可重入锁
  • 自旋锁
  • 分段锁
  • 锁升级(无锁|偏向锁|轻量级锁|重量级锁)
  • 锁优化技术(锁粗化、锁消除)

乐观锁和悲观锁

悲观锁

悲观锁对应于生活中悲观的人,悲观的人总是想着事情往坏的方向发展。

举个生活中的例子,假设厕所只有一个坑位了,悲观锁上厕所会第一时间把门反锁上,这样其他人上厕所只能在门外等候,这种状态就是「阻塞」了。

回到代码世界中,一个共享数据加了悲观锁,那线程每次想操作这个数据前都会假设其他线程也可能会操作这个数据,所以每次操作前都会上锁,这样其他线程想操作这个数据拿不到锁只能阻塞了。

在这里插入图片描述

在 Java 语言中 synchronized 和 ReentrantLock 等就是典型的悲观锁,还有一些使用了 synchronized 关键字的容器类如 HashTable 等也是悲观锁的应用。

乐观锁

乐观锁对应于生活中乐观的人,乐观的人总是想着事情往好的方向发展。

举个生活中的例子,假设厕所只有一个坑位了,乐观锁认为:这荒郊野外的,又没有什么人,不会有人抢我坑位的,每次关门上锁多浪费时间,还是不加锁好了。你看乐观锁就是天生乐观!

回到代码世界中,乐观锁操作数据时不会上锁,在更新的时候会判断一下在此期间是否有其他线程去更新这个数据。

在这里插入图片描述

乐观锁可以使用版本号机制和 CAS 算法实现。在 Java 语言中 java.util.concurrent.atomic 包下的原子类就是使用 CAS 乐观锁实现的。

两种锁的使用场景

悲观锁和乐观锁没有孰优孰劣,有其各自适应的场景。

乐观锁适用于写比较少(冲突比较小)的场景,因为不用上锁、释放锁,省去了锁的开销,从而提升了吞吐量。

如果是写多读少的场景,即冲突比较严重,线程间竞争激励,使用乐观锁就是导致线程不断进行重试,这样可能还降低了性能,这种场景下使用悲观锁就比较合适。

独占锁和共享锁

独占锁

独占锁是指锁一次只能被一个线程所持有。如果一个线程对数据加上排他锁后,那么其他线程不能再对该数据加任何类型的锁。获得独占锁的线程即能读数据又能修改数据。

图片

JDK 中的 synchronized 和 java.util.concurrent(JUC) 包中 Lock 的实现类就是独占锁。

共享锁

共享锁是指锁可被多个线程所持有。如果一个线程对数据加上共享锁后,那么其他线程只能对数据再加共享锁,不能加独占锁。获得共享锁的线程只能读数据,不能修改数据。

图片

在 JDK 中 ReentrantReadWriteLock 就是一种共享锁。

互斥锁和读写锁

互斥锁

互斥锁是独占锁的一种常规实现,是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。

图片

互斥锁一次只能一个线程拥有互斥锁,其他线程只有等待。

读写锁

读写锁是共享锁的一种具体实现。读写锁管理一组锁,一个是只读的锁,一个是写锁。

读锁可以在没有写锁的时候被多个线程同时持有,而写锁是独占的。写锁的优先级要高于读锁,一个获得了读锁的线程必须能看到前一个释放的写锁所更新的内容。

读写锁相比于互斥锁并发程度更高,每次只有一个写线程,但是同时可以有多个线程并发读。

图片

在 JDK 中定义了一个读写锁的接口:ReadWriteLock

public interface ReadWriteLock {
    /**
     * 获取读锁
     */
    Lock readLock();

    /**
     * 获取写锁
     */
    Lock writeLock();
}

ReentrantReadWriteLock 实现了 ReadWriteLock 接口,具体实现这里不展开,后续会深入源码解析。

公平锁和非公平锁

公平锁

公平锁是指多个线程按照申请锁的顺序来获取锁,这里类似排队买票,先来的人先买,后来的人在队尾排着,这是公平的。

图片

在 java 中可以通过构造函数初始化公平锁

/**
* 创建一个可重入锁,true 表示公平锁,false 表示非公平锁。默认非公平锁
*/
Lock lock = new ReentrantLock(true);

非公平锁

非公平锁是指多个线程获取锁的顺序并不是按照申请锁的顺序,有可能后申请的线程比先申请的线程优先获取锁,在高并发环境下,有可能造成优先级翻转,或者饥饿的状态(某个线程一直得不到锁)。

图片

在 java 中 synchronized 关键字是非公平锁,ReentrantLock 默认也是非公平锁。

/**
* 创建一个可重入锁,true 表示公平锁,false 表示非公平锁。默认非公平锁
*/
Lock lock = new ReentrantLock(false);

可重入锁

可重入锁又称之为递归锁,是指同一个线程在外层方法获取了锁,在进入内层方法会自动获取锁。

图片

对于 Java ReentrantLock 而言, 他的名字就可以看出是一个可重入锁。对于 Synchronized 而言,也是一个可重入锁。

敲黑板:可重入锁的一个好处是可一定程度避免死锁。

以 synchronized 为例,看一下下面的代码:

public synchronized void mehtodA() throws Exception{
 // Do some magic tings
 mehtodB();
}

public synchronized void mehtodB() throws Exception{
 // Do some magic tings
}

上面的代码中 methodA 调用 methodB,如果一个线程调用 methodA 已经获取了锁再去调用 methodB 就不需要再次获取锁了,这就是可重入锁的特性。如果不是可重入锁的话,mehtodB 可能不会被当前线程执行,可能造成死锁。

自旋锁

自旋锁是指线程在没有获得锁时不是被直接挂起,而是执行一个忙循环,这个忙循环就是所谓的自旋。

图片

自旋锁的目的是为了减少线程被挂起的几率,因为线程的挂起和唤醒也都是耗资源的操作。

如果锁被另一个线程占用的时间比较长,即使自旋了之后当前线程还是会被挂起,忙循环就会变成浪费系统资源的操作,反而降低了整体性能。因此自旋锁是不适应锁占用时间长的并发情况的。

在 Java 中,AtomicInteger 类有自旋的操作,我们看一下代码:

public final int getAndAddInt(Object o, long offset, int delta) {
    int v;
    do {
        v = getIntVolatile(o, offset);
    } while (!compareAndSwapInt(o, offset, v, v + delta));
    return v;
}

CAS 操作如果失败就会一直循环获取当前 value 值然后重试。

另外自适应自旋锁也需要了解一下。

在 JDK1.6 又引入了自适应自旋,这个就比较智能了,自旋时间不再固定,由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定。如果虚拟机认为这次自旋也很有可能再次成功那就会次序较多的时间,如果自旋很少成功,那以后可能就直接省略掉自旋过程,避免浪费处理器资源。

分段锁

分段锁 是一种锁的设计,并不是具体的一种锁。

分段锁设计目的是将锁的粒度进一步细化,当操作不需要更新整个数组的时候,就仅仅针对数组中的一项进行加锁操作。

图片

在 Java 语言中 CurrentHashMap 底层就用了分段锁,使用 Segment,就可以进行并发使用了。

锁升级(无锁|偏向锁|轻量级锁|重量级锁)

JDK1.6 为了提升性能减少获得锁和释放锁所带来的消耗,引入了4种锁的状态:无锁、偏向锁、轻量级锁和重量级锁,它会随着多线程的竞争情况逐渐升级,但不能降级。

无锁

无锁状态其实就是上面讲的乐观锁,这里不再赘述。

偏向锁

Java 偏向锁 (Biased Locking) 是指它会偏向于第一个访问锁的线程,如果在运行过程中,只有一个线程访问加锁的资源,不存在多线程竞争的情况,那么线程是不需要重复获取锁的,这种情况下,就会给线程加一个偏向锁。

偏向锁的实现是通过控制对象 Mark Word 的标志位来实现的,如果当前是可偏向状态,需要进一步判断对象头存储的线程 ID 是否与当前线程 ID 一致,如果一致直接进入。

轻量级锁

当线程竞争变得比较激烈时,偏向锁就会升级为轻量级锁,轻量级锁认为虽然竞争是存在的,但是理想情况下竞争的程度很低,通过自旋方式等待上一个线程释放锁。

重量级锁

如果线程并发进一步加剧,线程的自旋超过了一定次数,或者一个线程持有锁,一个线程在自旋,又来了第三个线程访问时(反正就是竞争继续加大了),轻量级锁就会膨胀为重量级锁,重量级锁会使除了此时拥有锁的线程以外的线程都阻塞。

升级到重量级锁其实就是互斥锁了,一个线程拿到锁,其余线程都会处于阻塞等待状态。

在 Java 中,synchronized 关键字内部实现原理就是锁升级的过程:无锁 --> 偏向锁 --> 轻量级锁 --> 重量级锁。这一过程在后续讲解 synchronized 关键字的原理时会详细介绍。

锁优化技术(锁粗化、锁消除)

锁粗化

锁粗化就是将多个同步块的数量减少,并将单个同步块的作用范围扩大,本质上就是将多次上锁、解锁的请求合并为一次同步请求。

举个例子,一个循环体中有一个代码同步块,每次循环都会执行加锁解锁操作。

private static final Object LOCK = new Object();

for(int i = 0;i < 100; i++) {
    synchronized(LOCK){
        // do some magic things
    }
}

经过锁粗化后就变成下面这个样子了:

synchronized(LOCK){
     for(int i = 0;i < 100; i++) {
        // do some magic things
    }
}

锁消除

锁消除是指虚拟机编译器在运行时检测到了共享数据没有竞争的锁,从而将这些锁进行消除。

举个例子让大家更好理解。

public String test(String s1, String s2){
    StringBuffer stringBuffer = new StringBuffer();
    stringBuffer.append(s1);
    stringBuffer.append(s2);
    return stringBuffer.toString();
}

上面代码中有一个 test 方法,主要作用是将字符串 s1 和字符串 s2 串联起来。

test 方法中三个变量 s1, s2, stringBuffer,它们都是局部变量,局部变量是在栈上的,栈是线程私有的,所以就算有多个线程访问 test 方法也是线程安全的。

我们都知道 StringBuffer 是线程安全的类,append 方法是同步方法,但是 test 方法本来就是线程安全的,为了提升效率,虚拟机帮我们消除了这些同步锁,这个过程就被称为锁消除。

StringBuffer.class

// append 是同步方法
public synchronized StringBuffer append(String str) {
    toStringCache = null;
    super.append(str);
    return this;
}

总结

前面讲了 Java 语言中各种各种的锁,最后再通过六个问题统一总结一下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/33342.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

445端口是啥?445端口怎么关闭?

445端口是Windows系统中的SMB协议&#xff0c;用于文件共享和网络打印功能。然而&#xff0c;这个端口也是黑客攻击的重要入口之一。那么&#xff0c;如何关闭445端口&#xff0c;保护自己的计算机安全呢&#xff1f; 关闭445端口的方法 1.在“控制面板”中打开“管理员工具”…

亚马逊云科技通过“逆向工作法”,为客户解决数据库问题

最近,数据库领域发生了一个大事件,可以称得上是一座里程碑。全球最具权威的IT研究公司Gartner最近发布了一个消息:在2022年的全球DBMS市场份额中,亚马逊云科技的数据库超越微软,登顶第一。 亚马逊云科技、微软、Oracle这三巨头近几年一直排名前三,占据了全球DBMS超过三分之二的…

RabbitMQ 2023面试5题(四)

一、RabbitMQ有哪些作用 RabbitMQ是一个消息队列中间件&#xff0c;它的作用是利用高效可靠的消息传递机制进行与平台无关的数据交流&#xff0c;并基于数据通信来进行的分布式系统的集成&#xff0c;主要作用有以下方面&#xff1a; 实现应用程序之间的异步和解耦&#xff1a…

【HTTP 协议2】如何构造 HTTP 请求

文章目录 前言一、地址栏输入二、HTML 特殊标签三、form 表单四、ajax总结 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等 &#x1f4d7; Java数据结…

JAVA2

文章目录 前言 前言 创建&#xff0c;编译java&#xff08;每4修改一次就要重新编译&#xff01;&#xff09; 第一个程序&#xff1a; 解决中文乱码问题&#xff1a; 效果&#xff1a; 总结&#xff1a;

微信小程序——分页组件的创建与使用

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

volatile关键字和ThreadLocal

作用&#xff1a; 1.线程的可见性&#xff1a;当一个线程修改一个共享变量时&#xff0c;另外一个线程能读到这个修改的值。 2. 顺序一致性&#xff1a;禁止指令重排序。 线程之间的共享变量存储在主内存中&#xff08;Main Memory&#xff09;中&#xff0c;每个线程都一个都…

有哪些做任务赚佣金的平台 做任务挣钱的app

科思创业汇 大家好&#xff0c;这里是科思创业汇&#xff0c;一个轻资产创业孵化平台。赚钱的方式有很多种&#xff0c;我希望在科思创业汇能够给你带来最快乐的那一种&#xff01; 做任务赚佣金的平台&#xff1f;做任务赚钱一直是一种流行的赚钱方式。现在有无数的app可以通…

6-js基础-3

JavaScript 基础 - 3 知道什么是数组及其应用的场景&#xff0c;掌握数组声明及访问的语法&#xff0c;具备利用数组渲染柱形图表的能力 今日重点&#xff1a; 循环嵌套数组综合案例 今日单词&#xff1a; 循环嵌套 利用循环的知识来对比一个简单的天文知识&#xff0c;我们…

SQL题型:根据逗号拆分列

例1&#xff1a; 表&#xff1a; 要实现的结果&#xff1a; 代码&#xff1a; select a.id as hyId,substring_index(substring_index(a.ch_ry_mc, ,,b.help_topic_id 1 ),,, - 1) AS CH_RY_ID FROM rsgl_hygl_hyxx a JOIN mysql.help_topic b ON b.help_topic_id < ( l…

python爬虫增加多线程获取数据

Python爬虫应用领域广泛&#xff0c;并且在数据爬取领域处于霸主位置&#xff0c;并且拥有很多性能好的框架&#xff0c;像Scrapy、Request、BeautifuSoap、urlib等框架可以实现爬行自如的功能&#xff0c;只要有能爬取的数据&#xff0c;Python爬虫均可实现。数据信息采集离不…

【算法】区间DP (从记忆化搜索到递推DP)⭐

文章目录 前期知识516. 最长回文子序列思路1——转换问题&#xff1a;求 s 和反转后 s 的 LCS&#xff08;最长公共子序列&#xff09;思路2——区间DP&#xff1a;从两侧向内缩小问题规模补充&#xff1a;记忆化搜索代码 1039. 多边形三角剖分的最低得分从记忆化搜索开始翻译成…

LLM - Hugging Face 工程 BERT base model (uncased) 配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://blog.csdn.net/caroline_wendy/article/details/131400428 BERT是一个在大量英文数据上以自监督的方式预训练的变换器模型。这意味着它只是在原始文本上进行预训练&#xff0c;没有人以…

el-table多级表头处理方法,了解lebel和prop的真实含义,template的意义,减少全局定义变量。

Element - The worlds most popular Vue UI framework 官网地址 其原理只需要在 el-table-column 里面嵌套 el-table-column&#xff0c;就可以实现多级表头。 要实现的效果如下图所示&#xff1a; <div class"c-table" id"tablePrint"><el-tabl…

信号链噪声分析15

文章目录 概要整体架构流程技术名词解释技术细节小结 概要 提示&#xff1a;这里可以添加技术概要 模数转换器(ADC)将模拟量——现实世界中绝大部分现象的特征——转换为数字语言&#xff0c; 以便用于信息处理、计算、数据传输和控制系统。数模转换器(DAC)则用于将发送或存 储…

【学习笔记】Unity基础(九)【cinemachine基础(body、aim参数详解)】(多fig动图示范)

目录 一 速览1.1 cinemachine下载1.2 官方示例速览1.3 cinemachine定义 二 cinemachine详解2.1 Virtual Camera2.1.1 virtual camera参数通览2.1.2 Status2.1.3 有关Dutch angle2.1.4 Standby Update2.1.5 Transitions 2.2 virtual cameral关键参数详解2.2.1 Body2.2.1.1 Do No…

主辅助服务市场出清模型研究【旋转备用】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

vue 3.0 + vite + flv 视频流播放

官方提供的 demo 地址&#xff0c;大家可以用自己的流地址&#xff0c;先试试是否符合需求&#xff1b; http://bilibili.github.io/flv.js/demo/ Flv.js API https://gitee.com/mirrors/flv.js/blob/master/docs/api.md 安装 Flv.js npm install --save flv.js更改 tscon…

软件测试工程师的工作内容?告诉你们什么是真正的测试工程师

目录 前言 1.何为软件测试工程师&#xff1f; 2.软件测试工程师的职责&#xff1f; 3.为什么要做软件测试&#xff1f; 4.软件测试的前途如何&#xff1f; 5.工具和思维谁更重要&#xff1f; 6.测试和开发相差大吗&#xff1f; 7.成为测试工程师的必备条件 8.测试的分…

局域网远程连接

一根网线连接两台电脑 前言步骤1 设置B“允许远程连接”2 A和B必须在同一个网段下面3 “winr”&#xff0c;输入“mstsc”中4 弹出“远程桌面连接”窗口&#xff0c;输入B的ip地址和B电脑的用户名及密码&#xff08;winL键锁屏&#xff0c;看看B的用户名和密码是什么&#xff0…
最新文章