在WIN从零开始在QMUE上添加一块自己的开发板(二)

文章目录

  • 一、前言
    • 往期回顾
  • 二、CPU虚拟化
    • (一)相关源码
    • (二)举个例子
    • (三)测试
  • 三、内存虚拟化
    • (一)相关源码
    • (二)举个例子
    • 测试
  • 参考资料

一、前言

笔者这篇博客作为平时学习时的笔记记录,如有不对还望指正,本博客大量借鉴资料,笔者只是拾人牙慧的小屁孩。
QEMU是一种通用的开源计算机仿真器和虚拟器。而QUME内置支持了一些开发板,我们可以基于这些内置的板子来做操作系统等软件的配置,但是实际市面上很多板子QUME中是没有提供支持的,这需要我们根据QUME的源码自定义一些开发板,然后再重新编译。

往期回顾

在WIN从零开始在QMUE上添加一块自己的开发板(一)

二、CPU虚拟化

(一)相关源码

QEMU中RISC-V CPU的支持
QOM的TYPE定义
target/riscv/cpu.h:

#define TYPE_RISCV_CPU "riscv-cpu"

#define RISCV_CPU_TYPE_SUFFIX "-" TYPE_RISCV_CPU
#define RISCV_CPU_TYPE_NAME(name) (name RISCV_CPU_TYPE_SUFFIX)
#define CPU_RESOLVING_TYPE TYPE_RISCV_CPU

#define TYPE_RISCV_CPU_ANY RISCV_CPU_TYPE_NAME("any")
#define TYPE_RISCV_CPU_BASE32 RISCV_CPU_TYPE_NAME("rv32")
#define TYPE_RISCV_CPU_BASE64 RISCV_CPU_TYPE_NAME("rv64")
#define TYPE_RISCV_CPU_IBEX RISCV_CPU_TYPE_NAME("lowrisc-ibex")
#define TYPE_RISCV_CPU_SIFIVE_E31 RISCV_CPU_TYPE_NAME("sifive-e31")
#define TYPE_RISCV_CPU_SIFIVE_E34 RISCV_CPU_TYPE_NAME("sifive-e34")
#define TYPE_RISCV_CPU_SIFIVE_E51 RISCV_CPU_TYPE_NAME("sifive-e51")
#define TYPE_RISCV_CPU_SIFIVE_U34 RISCV_CPU_TYPE_NAME("sifive-u34")
#define TYPE_RISCV_CPU_SIFIVE_U54 RISCV_CPU_TYPE_NAME("sifive-u54")

TYPE用于hash表的key(GHashTable.key),而hash表的值也就是ObjectClassObject

Class
RISCVCPUClass继承于CPUClass,然后继承于DeviceClass
CPUClass中有很多接口:

struct CPUClass {
	DeviceClass parent_class;
	ObjectClass *(*class_by_name)();
	void (*parse_features)();
	int reset_dump_flags;
	bool (*has_work)();
	bool (*virtio_is_big_endian)();
	int (*memory_rw_debug)();
	void (*dump_state)();
	GuestPanicInformation* (*get_crash_info)();
	void (*dump_statistics)();
	int64_t (*get_arch_id)();
	bool (*get_paging_enabled)();
	void (*get_memory_mapping)();
	void (*set_pc)();
	hwaddr (*get_phys_page_debug)();
	hwaddr (*get_phys_page_attrs_debug)();
	int (*asidx_from_attrs)();
	int (*gdb_read_register)();
	int (*gdb_write_register)();
	int (*write_elf64_note)();
	int (*write_elf64_qemunote)();
	int (*write_elf32_note)();
	int (*write_elf32_qemunote)();
	const VMStateDescription *vmsd;
	const char *gdb_core_xml_file;
	gchar * (*gdb_arch_name)();
	const char * (*gdb_get_dynamic_xml)();
	void (*disas_set_info)();
	const char *deprecation_note;
	int gdb_num_core_regs;
	bool gdb_stop_before_watchpoint;
	struct AccelCPUClass *accel_cpu;
	struct TCGCPUOps *tcg_ops;
};

我们着重看一下struct TCGCPUOps

struct TCGCPUOps {
	void (*initialize)(void);
	void (*synchronize_from_tb)(CPUState *cpu, const TranslationBlock *tb);
	void (*cpu_exec_enter)(CPUState *cpu);
	void (*cpu_exec_exit)(CPUState *cpu);
	bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
	void (*do_interrupt)(CPUState *cpu);
	bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
	MMUAccessType access_type, int mmu_idx,
	bool probe, uintptr_t retaddr);
	void (*debug_excp_handler)(CPUState *cpu);
#ifdef NEED_CPU_H
#ifdef CONFIG_SOFTMMU
	void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
	unsigned size, MMUAccessType access_type,
	int mmu_idx, MemTxAttrs attrs,
	MemTxResult response, uintptr_t retaddr);
	void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
	MMUAccessType access_type,
	int mmu_idx, uintptr_t retaddr);
	vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
	bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
	bool (*io_recompile_replay_branch)(CPUState *cpu,
	const TranslationBlock *tb);
#endif /* CONFIG_SOFTMMU */
#endif /* NEED_CPU_H */
};

可以看见里面有很多CPU运行时的接口。
在不同架构中,我们进行相应的实现,对于RISCVCPU,已经有相应的实现了:

static struct TCGCPUOps riscv_tcg_ops = {
	.initialize = riscv_translate_init,
	.synchronize_from_tb = riscv_cpu_synchronize_from_tb,
	.cpu_exec_interrupt = riscv_cpu_exec_interrupt,
	.tlb_fill = riscv_cpu_tlb_fill,
#ifndef CONFIG_USER_ONLY
	.do_interrupt = riscv_cpu_do_interrupt,
	.do_transaction_failed = riscv_cpu_do_transaction_failed,
	.do_unaligned_access = riscv_cpu_do_unaligned_access,
#endif /* !CONFIG_USER_ONLY */
};

Object
对于CPU中寄存器的定义都在Object中:

struct CPURISCVState {
	target_ulong gpr[32];
	uint64_t fpr[32]; /* assume both F and D extensions */
	/* vector coprocessor state. */
	uint64_t vreg[32 * RV_VLEN_MAX / 64] QEMU_ALIGNED(16);
	//vector reg
	target_ulong pc;
	target_ulong misa;
	uint32_t features;
	/* Hypervisor CSRs */
	/* Virtual CSRs */
	/* HS Backup CSRs */
	/* temporary htif regs */
	/* physical memory protection */
	/* machine specific rdtime callback */
	/* True if in debugger mode. */
	bool debugger;
	float_status fp_status;
	/* Fields from here on are preserved across CPU reset. */
	QEMUTimer *timer; /* Internal timer */
};

实例化

	struct RISCVCPU {
	/*< private >*/
	CPUState parent_obj;
	/*< public >*/
	CPUNegativeOffsetState neg;
	CPURISCVState env;
	char *dyn_csr_xml;
	/* Configuration Settings */
	struct {
	……
	} cfg;
};

RISCV CPU TypeInfo注册:

.instance_init = riscv_cpu_init,
.class_init = riscv_cpu_class_init,

特殊的CPU使用特殊的函数进行实例

.instance_init = rvxx_sifive_e_cpu_init,
.class_init = riscv_cpu_class_init,

在特殊的函数中,将会针对不同CPU的特性进行个性化实例:

static void rvxx_sifive_e_cpu_init(Object *obj)
{
	CPURISCVState *env = &RISCV_CPU(obj)->env;
	set_misa(env, RVXLEN | RVI | RVM | RVA | RVC | RVU);
	set_priv_version(env, PRIV_VERSION_1_10_0);
	set_resetvec(env, 0x1004);
	qdev_prop_set_bit(DEVICE(obj), "mmu", false);
}

(二)举个例子

我们为之前创建的开发板增加CPU。
我们去target\riscv\cpu-qom.h,添加一个我们自己的CPU:

...
#define RISCV_CPU_TYPE_SUFFIX "-" TYPE_RISCV_CPU
#define RISCV_CPU_TYPE_NAME(name) (name RISCV_CPU_TYPE_SUFFIX)

#define TYPE_RISCV_CPU_ANY              RISCV_CPU_TYPE_NAME("any")
#define TYPE_RISCV_CPU_MAX              RISCV_CPU_TYPE_NAME("max")
#define TYPE_RISCV_CPU_BASE32           RISCV_CPU_TYPE_NAME("rv32")
#define TYPE_RISCV_CPU_BASE64           RISCV_CPU_TYPE_NAME("rv64")
#define TYPE_RISCV_CPU_BASE128          RISCV_CPU_TYPE_NAME("x-rv128")
#define TYPE_RISCV_CPU_IBEX             RISCV_CPU_TYPE_NAME("lowrisc-ibex")
#define TYPE_RISCV_CPU_SHAKTI_C         RISCV_CPU_TYPE_NAME("shakti-c")
#define TYPE_RISCV_CPU_SIFIVE_E31       RISCV_CPU_TYPE_NAME("sifive-e31")
#define TYPE_RISCV_CPU_SIFIVE_E34       RISCV_CPU_TYPE_NAME("sifive-e34")
#define TYPE_RISCV_CPU_SIFIVE_E51       RISCV_CPU_TYPE_NAME("sifive-e51")
#define TYPE_RISCV_CPU_SIFIVE_U34       RISCV_CPU_TYPE_NAME("sifive-u34")
#define TYPE_RISCV_CPU_SIFIVE_U54       RISCV_CPU_TYPE_NAME("sifive-u54")
#define TYPE_RISCV_CPU_THEAD_C906       RISCV_CPU_TYPE_NAME("thead-c906")
#define TYPE_RISCV_CPU_VEYRON_V1        RISCV_CPU_TYPE_NAME("veyron-v1")
#define TYPE_RISCV_CPU_HOST             RISCV_CPU_TYPE_NAME("host")
/* 添加自己的CPU */
#define TYPE_RISCV_CPU_NUCLEI_N600       RISCV_CPU_TYPE_NAME("nuclei-n600")

并在./target/riscv/cpu.c中,添加其初始化函数:

#if defined(TARGET_RISCV32)
/* 自己的CPU */
static void rv32_nuclei_n_cpu_init(Object *obj)
{
    CPURISCVState *env = &RISCV_CPU(obj)->env;
    RISCVCPU *cpu = RISCV_CPU(obj);
    riscv_cpu_set_misa(env, MXL_RV32, RVI | RVM | RVA | RVC | RVF | RVD | RVU);
    env->priv_ver=  PRIV_VERSION_1_10_0;
    #ifndef CONFIG_USER_ONLY
    set_satp_mode_max_supported(cpu, VM_1_10_MBARE);
#endif

    /* inherited from parent obj via riscv_cpu_init() */
    cpu->cfg.ext_zifencei = true;
    cpu->cfg.ext_zicsr = true;
    cpu->cfg.pmp = true;
}
#endif

并在riscv_cpu_type_infos中添加DEFINE

static const TypeInfo riscv_cpu_type_infos[] = {
    {
        .name = TYPE_RISCV_CPU,
        .parent = TYPE_CPU,
        .instance_size = sizeof(RISCVCPU),
        .instance_align = __alignof(RISCVCPU),
        .instance_init = riscv_cpu_init,
        .instance_post_init = riscv_cpu_post_init,
        .abstract = true,
        .class_size = sizeof(RISCVCPUClass),
        .class_init = riscv_cpu_class_init,
    },
    {
        .name = TYPE_RISCV_DYNAMIC_CPU,
        .parent = TYPE_RISCV_CPU,
        .abstract = true,
    },
    DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_ANY,      riscv_any_cpu_init),
    DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_MAX,      riscv_max_cpu_init),
#if defined(TARGET_RISCV32)
    DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE32,   rv32_base_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_IBEX,             rv32_ibex_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E31,       rv32_sifive_e_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E34,       rv32_imafcu_nommu_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U34,       rv32_sifive_u_cpu_init),
    /* 自己的CPU */
    DEFINE_CPU(TYPE_RISCV_CPU_NUCLEI_N600,      rv32_nuclei_n_cpu_init),
    
#elif defined(TARGET_RISCV64)
    DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE64,   rv64_base_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_E51,       rv64_sifive_e_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SIFIVE_U54,       rv64_sifive_u_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_SHAKTI_C,         rv64_sifive_u_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_THEAD_C906,       rv64_thead_c906_cpu_init),
    DEFINE_CPU(TYPE_RISCV_CPU_VEYRON_V1,        rv64_veyron_v1_cpu_init),
    DEFINE_DYNAMIC_CPU(TYPE_RISCV_CPU_BASE128,  rv128_base_cpu_init),
#endif
};

接着我们回到我们的开发板文件,
这里讲个小技巧,也就是从include\hw\riscv\virt.h(官方虚拟开发板的例程)看相关的引用,从而确定相关头文件的所在位置和相关代码的实现。
在我们的nuclei_n.h中(请注意,为了方便理解,这里对往期变量及函数的名字进行了更改):
引入头文件

#include "hw/riscv/riscv_hart.h"

并在SOC中添加CPU

/* CPU 定义 */
#define NUCLEI_N_CPU TYPE_RISCV_CPU_NUCLEI_N600

typedef struct NucLeiNSoCState
{
	/*< private >*/
	SysBusDevice parent_obj;
	/*< public >*/
	RISCVHartArrayState cpus;
} NucLeiNSoCState;

以及一些TYPE

#define NUCLEI_N_CPU 						TYPE_RISCV_CPU_NUCLEI_N600

之后我们在Machine的Class里面增加最小CPU个数和默认CPU的TYPE

static void nuclei_machine_class_init(ObjectClass *oc, void *data)
{
	qemu_log(">>nuclei_machine_class_init \n");
	MachineClass *mc = MACHINE_CLASS(oc);
    mc->desc = "Nuclei MCU 200T FPGA Evaluation Kit";
	mc->init = nuclei_mcu_machine_init;
	mc->max_cpus = 1;
    mc->default_cpu_type = NUCLEI_N_CPU;
}

我们在SOC实例初始化函数中,对CPU初始化:

static void nuclei_n_soc_instance_init(Object *obj)
{
	qemu_log(">>nuclei_n_soc_instance_init \n");
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	object_initialize_child(obj, "cpus", &s->cpus, TYPE_RISCV_HART_ARRAY);  //初始化CPU
}

并在SOC实现中(nuclei_n_soc_realize)进行CPU的实现:

static void nuclei_n_soc_realize(DeviceState *dev, Error **errp)
{
	qemu_log(">>nuclei_n_soc_realize \n");
	MachineState *ms = MACHINE(qdev_get_machine());
    NucLeiNSoCState *s = NUCLEI_N_SOC(dev);

    object_property_set_str(OBJECT(&s->cpus), "cpu-type", ms->cpu_type, &error_abort);      
    object_property_set_int(OBJECT(&s->cpus), "num-harts", ms->smp.cpus, &error_abort);
    sysbus_realize(SYS_BUS_DEVICE(&s->cpus), &error_abort);  //CPU实例化
}

附上完整:

nuclei_n.h:

#include "hw/sysbus.h"
#include "hw/riscv/riscv_hart.h"

#define TYPE_NUCLEI_N_SOC "riscv.nuclei.n.soc"
#define NUCLEI_N_SOC(obj) \
    OBJECT_CHECK(NucLeiNSoCState, (obj), TYPE_NUCLEI_N_SOC)

/* CPU 定义 */
#define NUCLEI_N_CPU TYPE_RISCV_CPU_NUCLEI_N600

typedef struct NucLeiNSoCState
{
	/*< private >*/
	SysBusDevice parent_obj;
	/*< public >*/
	RISCVHartArrayState cpus;
} NucLeiNSoCState;


/* Machine state定义 */
#define TYPE_NUCLEI_MCU_FPGA_MACHINE MACHINE_TYPE_NAME("mcu_200t")
#define MCU_FPGA_MACHINE(obj) \
    OBJECT_CHECK(NucLeiNState, (obj), TYPE_NUCLEI_MCU_FPGA_MACHINE)

typedef struct NucLeiNState
{
	/*< private >*/
	SysBusDevice parent_obj;
	/*< public >*/
	NucLeiNSoCState soc;
} NucLeiNState;

nuclei_n.c:

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/riscv/nuclei_n.h"
#include "hw/boards.h"


static void nuclei_n_soc_instance_init(Object *obj)
{
	qemu_log(">>nuclei_n_soc_instance_init \n");
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	object_initialize_child(obj, "cpus", &s->cpus, TYPE_RISCV_HART_ARRAY);  //初始化CPU
}

static void nuclei_n_soc_realize(DeviceState *dev, Error **errp)
{
	qemu_log(">>nuclei_n_soc_realize \n");
	MachineState *ms = MACHINE(qdev_get_machine());
    NucLeiNSoCState *s = NUCLEI_N_SOC(dev);

    object_property_set_str(OBJECT(&s->cpus), "cpu-type", ms->cpu_type, &error_abort);      
    object_property_set_int(OBJECT(&s->cpus), "num-harts", ms->smp.cpus, &error_abort);
    sysbus_realize(SYS_BUS_DEVICE(&s->cpus), &error_abort);            //CPU实例化
}
static void nuclei_n_soc_class_init(ObjectClass *oc, void *data)
{
	qemu_log(">>nuclei_n_soc_class_init \n");
	DeviceClass *dc = DEVICE_CLASS(oc);
	dc->realize = nuclei_n_soc_realize;
	dc->user_creatable = false;
}

static const TypeInfo nuclei_n_soc_type_info = {
	.name = TYPE_NUCLEI_N_SOC,
	.parent = TYPE_DEVICE,
	.instance_size = sizeof(NucLeiNSoCState),
	.instance_init = nuclei_n_soc_instance_init,
	.class_init = nuclei_n_soc_class_init,
};
static void nuclei_n_soc_register_types(void)
{
	type_register_static(&nuclei_n_soc_type_info);
}
type_init(nuclei_n_soc_register_types)

static void nuclei_mcu_machine_init(MachineState *machine)
{
	NucLeiNState *s = MCU_FPGA_MACHINE(machine);
	qemu_log(">>nuclei_mcu_machine_init \n");
	/* Initialize SOC */
	object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_NUCLEI_N_SOC);
	qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
}
static void nuclei_machine_instance_init(Object *obj)
{
	qemu_log(">>nuclei_machine_instance_init \n");
}
static void nuclei_machine_class_init(ObjectClass *oc, void *data)
{
	qemu_log(">>nuclei_machine_class_init \n");
	MachineClass *mc = MACHINE_CLASS(oc);
    mc->desc = "Nuclei MCU 200T FPGA Evaluation Kit";
	mc->init = nuclei_mcu_machine_init;
	mc->max_cpus = 1;
    mc->default_cpu_type = NUCLEI_N_CPU;
}

static const TypeInfo nuclei_machine_typeinfo = {
	.name = TYPE_NUCLEI_MCU_FPGA_MACHINE,
	.parent = TYPE_MACHINE,
	.class_init = nuclei_machine_class_init,
	.instance_init = nuclei_machine_instance_init,
	.instance_size = sizeof(NucLeiNState),
};
static void nuclei_machine_init_register_types(void)
{
	type_register_static(&nuclei_machine_typeinfo);
}
type_init(nuclei_machine_init_register_types)

不用忘记在./target/riscv/cpu.c去定义CPU哦。

(三)测试

执行run.sh:

SHELL_FOLDER=$(cd "$(dirname "$0")";pwd)
$SHELL_FOLDER/output/qemu/qemu-system-riscv32.exe \
-M mcu_200t

得到以下效果:
CPU虚拟化

三、内存虚拟化

(一)相关源码

有了之前的开发经验,我们这次直接看相关API:

Types of regionsinitialize
RAMmemory_region_init_ram()
MMIOmemory_region_init_io()
ROMmemory_region_init_rom()
ROM_evicememory_region_init_rom_device()
IOMMU regionmemory_region_init_iommu()
containermemory_region_init()
aliasmemory_region_init_alias()
reservation regionmemory_region_init_io()

其次是添加硬件的地址和映射的地址长度的结构体:
(注意这里的长度不能为0,不然会报错)

typedef struct MemMapEntry {
    hwaddr base; //基址
    hwaddr size; //长度
} MemMapEntry;

然后是关于ROM的指令初始化:

/* reset vector */
uint32_t reset_vec[8] = {
	0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
	0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
	0xf1402573, /* csrr a0, mhartid */
	#if defined(TARGET_RISCV32)
	0x0182a283, /* lw t0, 24(t0) */
	#elif defined(TARGET_RISCV64)
	0x0182b283, /* ld t0, 24(t0) */
	#endif
	0x00028067, /* jr t0 */
	0x00000000,
	start_addr, /* start: .dword DRAM_BASE */
	0x00000000,
};
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < sizeof(reset_vec) >> 2; i++)
{
	reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),memmap[NUCLEI_N_ROM].base, &address_space_memory);
/* boot rom */
if (machine->kernel_filename)
{
	riscv_load_kernel(machine>kernel_filename, start_addr, NULL);
}

这种是手动执行指令初始化,当然,因为我们使用的RISCV架构,直接使用riscv_setup_rom_reset_vec进行指令初始化也是可以的。

这里我们再讲一下内存模拟的一个步骤:

  1. 执行初始化函数,例如ROM的就是memory_region_init_rom
  2. 分配/挂载,memory_region_add_subregion,当然还会用上系统根节点获取get_system_memory
  3. ROM设置(指令初始化)或者加载kernel

(二)举个例子

根据SOC指定地址编写MemMapEntry
MemMapEntry

enum
{
    NUCLEI_N_DEBUG,
    NUCLEI_N_ROM,
    NUCLEI_N_TIMER,
    NUCLEI_N_ECLIC,
    NUCLEI_N_GPIO,
    NUCLEI_N_UART0,
    NUCLEI_N_QSPI0,
    NUCLEI_N_PWM0,
    NUCLEI_N_UART1,
    NUCLEI_N_QSPI1,
    NUCLEI_N_PWM1,
    NUCLEI_N_QSPI2,
    NUCLEI_N_PWM2,
    NUCLEI_N_XIP,
    NUCLEI_N_DRAM,
    NUCLEI_N_ILM,
    NUCLEI_N_DLM
};

static MemMapEntry nuclei_n_memmap[] = {
    [NUCLEI_N_DEBUG] 	= 	{0x0, 0x1000},
    [NUCLEI_N_ROM] 		= 	{0x1000, 0x1000},
    [NUCLEI_N_TIMER] 	= 	{0x2000000, 0x1000},
    [NUCLEI_N_ECLIC] 	= 	{0xc000000, 0x10000},
    [NUCLEI_N_GPIO] 	= 	{0x10012000, 0x1000},
    [NUCLEI_N_UART0] 	= 	{0x10013000, 0x1000},
    [NUCLEI_N_QSPI0] 	= 	{0x10014000, 0x1000},
    [NUCLEI_N_PWM0] 	= 	{0x10015000, 0x1000},
    [NUCLEI_N_UART1] 	= 	{0x10023000, 0x1000},
    [NUCLEI_N_QSPI1] 	= 	{0x10024000, 0x1000},
    [NUCLEI_N_PWM1] 	= 	{0x10025000, 0x1000},
    [NUCLEI_N_QSPI2] 	= 	{0x10034000, 0x1000},
    [NUCLEI_N_PWM2] 	= 	{0x10035000, 0x1000},
    [NUCLEI_N_XIP] 		= 	{0x20000000, 0x10000000},
    [NUCLEI_N_DRAM] 	= 	{0xa0000000, 0x0},
    [NUCLEI_N_ILM] 		= 	{0x80000000, 0x20000},
    [NUCLEI_N_DLM] 		= 	rub{0x90000000, 0x20000},
};

之后我们初始化ROM地址:

/* Internal ROM */
	memory_region_init_rom(&s->internal_rom, OBJECT(obj), "riscv.nuclei.n.irom", memmap[NUCLEI_N_ROM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_ROM].base, &s->internal_rom);

这里我们假设idlm和ROM都为Soc外设:
于是我们编写相关函数:

static void nuclei_n_soc_memory_create(Object *obj)
{
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	const MemMapEntry *memmap = nuclei_n_memmap;
	MemoryRegion *sys_mem = get_system_memory();

	/* Internal ROM */
	memory_region_init_rom(&s->internal_rom, OBJECT(obj), "riscv.nuclei.n.irom", memmap[NUCLEI_N_ROM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_ROM].base, &s->internal_rom);

		
	/* Initialize ilm dlm */
    memory_region_init_ram(&s->ilm, NULL, "riscv.nuclei.n.ilm", memmap[NUCLEI_N_ILM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_ILM].base, &s->ilm);
    memory_region_init_ram(&s->dlm, NULL, "riscv.nuclei.n.dlm", memmap[NUCLEI_N_DLM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_DLM].base, &s->dlm);

	 /* SysTimer */
    create_unimplemented_device("riscv.nuclei.n.timer", memmap[NUCLEI_N_TIMER].base, memmap[NUCLEI_N_TIMER].size);
    /* Eclic */
    create_unimplemented_device("riscv.nuclei.n.eclic", memmap[NUCLEI_N_ECLIC].base, memmap[NUCLEI_N_ECLIC].size);
    /* GPIO */
    create_unimplemented_device("riscv.nuclei.n.gpio", memmap[NUCLEI_N_GPIO].base, memmap[NUCLEI_N_GPIO].size);
}

因为还没有实现一些设备,所以我们创建unimplemented设备来占用内存:

	 /* SysTimer */
    create_unimplemented_device("riscv.nuclei.n.timer", memmap[NUCLEI_N_TIMER].base, memmap[NUCLEI_N_TIMER].size);
    /* Eclic */
    create_unimplemented_device("riscv.nuclei.n.eclic", memmap[NUCLEI_N_ECLIC].base, memmap[NUCLEI_N_ECLIC].size);
    /* GPIO */
    create_unimplemented_device("riscv.nuclei.n.gpio", memmap[NUCLEI_N_GPIO].base, memmap[NUCLEI_N_GPIO].size);

这次我们把CPU的初始化和实例化也类似封装成一个函数:

static void nuclei_n_soc_cpu_create(Object *obj)
{
	MachineState *ms = MACHINE(qdev_get_machine());
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	object_initialize_child(obj, "cpus", &s->cpus, TYPE_RISCV_HART_ARRAY);  //初始化CPU

    object_property_set_str(OBJECT(&s->cpus), "cpu-type", ms->cpu_type, &error_abort);      
    object_property_set_int(OBJECT(&s->cpus), "num-harts", ms->smp.cpus, &error_abort);
    sysbus_realize(SYS_BUS_DEVICE(&s->cpus), &error_abort);            		//CPU实例化
}

然后我们在nuclei_n_soc_instance_init中调用:

static void nuclei_n_soc_instance_init(Object *obj)
{
	/* SOC CPU */
	nuclei_n_soc_cpu_create(obj);
	/* SOC Memory */
	nuclei_n_soc_memory_create(obj);
}

其次是设置ROM和加载kernel,我们在整个Machine实例中进行初始化:

static void nuclei_mcu_machine_init(MachineState *machine)
{
	NucLeiNState *s = MCU_FPGA_MACHINE(machine);
	const MemMapEntry *memmap = nuclei_n_memmap;
    target_ulong start_addr;
	int i;

	/* Initialize SOC */
	object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_NUCLEI_N_SOC);
	qdev_realize(DEVICE(&s->soc), NULL, &error_abort);

	//选择启动方式
     switch (s->msel)
    {
    case MSEL_ILM:
        start_addr = memmap[NUCLEI_N_ILM].base;
        break;
    case MSEL_FLASH:
        start_addr = memmap[NUCLEI_N_XIP].base;
        break;
    case MSEL_FLASHXIP:
        start_addr = memmap[NUCLEI_N_XIP].base;
        break;
    case MSEL_DDR:
        start_addr = memmap[NUCLEI_N_DRAM].base;
        break;
    default:
        start_addr = memmap[NUCLEI_N_ILM].base;
        break;
    }

       /* reset vector */
    uint32_t reset_vec[8] = {
        0x00000297, /* 1:  auipc  t0, %pcrel_hi(dtb) */
        0x02028593, /*     addi   a1, t0, %pcrel_lo(1b) */
        0xf1402573, /*     csrr   a0, mhartid  */
#if defined(TARGET_RISCV32)
        0x0182a283, /*     lw     t0, 24(t0) */
#elif defined(TARGET_RISCV64)
        0x0182b283, /*     ld     t0, 24(t0) */
#endif
        0x00028067, /*     jr     t0 */
        0x00000000,
        start_addr, /* start: .dword DRAM_BASE */
        0x00000000,
    };

    /* copy in the reset vector in little_endian byte order */
    for (i = 0; i < sizeof(reset_vec) >> 2; i++)
    {
        reset_vec[i] = cpu_to_le32(reset_vec[i]);
    }
    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
                          memmap[NUCLEI_N_ROM].base, &address_space_memory); //CPU初始化地址

    /* boot rom */
    if (machine->kernel_filename)
    {
		riscv_load_kernel(machine, &s->soc.cpus, start_addr, true, NULL);	//将裸机代码加载到地址start_addr
       // riscv_load_kernel(machine->kernel_filename, start_addr, NULL);  
    }
}

测试

我们进行测试:
编译完成后运行程序并执行:

info mtree

测试结果

结尾附上完整代码:
nuclei_n.h

#include "hw/boards.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/sysbus.h"

#define TYPE_NUCLEI_N_SOC "riscv.nuclei.n.soc"
#define NUCLEI_N_SOC(obj) \
    OBJECT_CHECK(NucLeiNSoCState, (obj), TYPE_NUCLEI_N_SOC)

/* CPU 定义 */
#define NUCLEI_N_CPU TYPE_RISCV_CPU_NUCLEI_N600

typedef struct NucLeiNSoCState
{
	/*< private >*/
	DeviceState parent_obj;
	/*< public >*/
	RISCVHartArrayState cpus;

	MemoryRegion internal_rom;
    MemoryRegion ilm;
    MemoryRegion dlm;
    MemoryRegion xip_mem;
} NucLeiNSoCState;


/* Machine state定义 */
#define TYPE_NUCLEI_MCU_FPGA_MACHINE MACHINE_TYPE_NAME("mcu_200t")
#define MCU_FPGA_MACHINE(obj) \
    OBJECT_CHECK(NucLeiNState, (obj), TYPE_NUCLEI_MCU_FPGA_MACHINE)

typedef struct NucLeiNState
{
	/*< private >*/
	MachineState parent;
	/*< public >*/
	NucLeiNSoCState soc;
	
	 uint32_t msel;
} NucLeiNState;

enum
{
    MSEL_ILM = 1,
    MSEL_FLASH = 2,
    MSEL_FLASHXIP = 3,
    MSEL_DDR = 4
};

enum
{
    NUCLEI_N_DEBUG,
    NUCLEI_N_ROM,
    NUCLEI_N_TIMER,
    NUCLEI_N_ECLIC,
    NUCLEI_N_GPIO,
    NUCLEI_N_UART0,
    NUCLEI_N_QSPI0,
    NUCLEI_N_PWM0,
    NUCLEI_N_UART1,
    NUCLEI_N_QSPI1,
    NUCLEI_N_PWM1,
    NUCLEI_N_QSPI2,
    NUCLEI_N_PWM2,
    NUCLEI_N_XIP,
    NUCLEI_N_DRAM,
    NUCLEI_N_ILM,
    NUCLEI_N_DLM
};

nuclei_n.c

#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/riscv/nuclei_n.h"
#include "qapi/visitor.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/misc/unimp.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/boot.h"


static MemMapEntry nuclei_n_memmap[] = {
    [NUCLEI_N_DEBUG] 	= 	{0x0, 0x1000},
    [NUCLEI_N_ROM] 		= 	{0x1000, 0x1000},
    [NUCLEI_N_TIMER] 	= 	{0x2000000, 0x1000},
    [NUCLEI_N_ECLIC] 	= 	{0xc000000, 0x10000},
    [NUCLEI_N_GPIO] 	= 	{0x10012000, 0x1000},
    [NUCLEI_N_UART0] 	= 	{0x10013000, 0x1000},
    [NUCLEI_N_QSPI0] 	= 	{0x10014000, 0x1000},
    [NUCLEI_N_PWM0] 	= 	{0x10015000, 0x1000},
    [NUCLEI_N_UART1] 	= 	{0x10023000, 0x1000},
    [NUCLEI_N_QSPI1] 	= 	{0x10024000, 0x1000},
    [NUCLEI_N_PWM1] 	= 	{0x10025000, 0x1000},
    [NUCLEI_N_QSPI2] 	= 	{0x10034000, 0x1000},
    [NUCLEI_N_PWM2] 	= 	{0x10035000, 0x1000},
    [NUCLEI_N_XIP] 		= 	{0x20000000, 0x10000000},
    [NUCLEI_N_DRAM] 	= 	{0xa0000000, 0x0},
    [NUCLEI_N_ILM] 		= 	{0x80000000, 0x20000},
    [NUCLEI_N_DLM] 		= 	{0x90000000, 0x20000},
};


static void nuclei_n_soc_cpu_create(Object *obj)
{
	MachineState *ms = MACHINE(qdev_get_machine());
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	object_initialize_child(obj, "cpus", &s->cpus, TYPE_RISCV_HART_ARRAY);  //初始化CPU

    object_property_set_str(OBJECT(&s->cpus), "cpu-type", ms->cpu_type, &error_abort);      
    object_property_set_int(OBJECT(&s->cpus), "num-harts", ms->smp.cpus, &error_abort);
    sysbus_realize(SYS_BUS_DEVICE(&s->cpus), &error_abort);            		//CPU实例化
}

static void nuclei_n_soc_memory_create(Object *obj)
{
	NucLeiNSoCState *s = NUCLEI_N_SOC(obj);
	const MemMapEntry *memmap = nuclei_n_memmap;
	MemoryRegion *sys_mem = get_system_memory();

	/* Internal ROM */
	memory_region_init_rom(&s->internal_rom, OBJECT(obj), "riscv.nuclei.n.irom", memmap[NUCLEI_N_ROM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_ROM].base, &s->internal_rom);

		
	/* Initialize ilm dlm */
    memory_region_init_ram(&s->ilm, NULL, "riscv.nuclei.n.ilm", memmap[NUCLEI_N_ILM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_ILM].base, &s->ilm);
    memory_region_init_ram(&s->dlm, NULL, "riscv.nuclei.n.dlm", memmap[NUCLEI_N_DLM].size, &error_fatal);
    memory_region_add_subregion(sys_mem, memmap[NUCLEI_N_DLM].base, &s->dlm);

	 /* SysTimer */
    create_unimplemented_device("riscv.nuclei.n.timer",
    memmap[NUCLEI_N_TIMER].base, memmap[NUCLEI_N_TIMER].size);
    /* Eclic */
    create_unimplemented_device("riscv.nuclei.n.eclic",
    memmap[NUCLEI_N_ECLIC].base, memmap[NUCLEI_N_ECLIC].size);
    /* GPIO */
    create_unimplemented_device("riscv.nuclei.n.gpio",
    memmap[NUCLEI_N_GPIO].base, memmap[NUCLEI_N_GPIO].size);
}

static void nuclei_n_soc_instance_init(Object *obj)
{
	/* SOC CPU */
	nuclei_n_soc_cpu_create(obj);
	/* SOC Memory */
	nuclei_n_soc_memory_create(obj);
}

static void nuclei_n_soc_class_init(ObjectClass *oc, void *data)
{
	DeviceClass *dc = DEVICE_CLASS(oc);
	dc->user_creatable = false;
}

static const TypeInfo nuclei_n_soc_type_info = {
	.name = TYPE_NUCLEI_N_SOC,
	.parent = TYPE_DEVICE,
	.instance_size = sizeof(NucLeiNSoCState),
	.instance_init = nuclei_n_soc_instance_init,
	.class_init = nuclei_n_soc_class_init,
};
static void nuclei_n_soc_register_types(void)
{
	type_register_static(&nuclei_n_soc_type_info);
}
type_init(nuclei_n_soc_register_types)

static void nuclei_mcu_machine_init(MachineState *machine)
{
	NucLeiNState *s = MCU_FPGA_MACHINE(machine);
	const MemMapEntry *memmap = nuclei_n_memmap;
    target_ulong start_addr;
	int i;

	/* Initialize SOC */
	object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_NUCLEI_N_SOC);
	qdev_realize(DEVICE(&s->soc), NULL, &error_abort);

	//选择启动方式
     switch (s->msel)
    {
    case MSEL_ILM:
        start_addr = memmap[NUCLEI_N_ILM].base;
        break;
    case MSEL_FLASH:
        start_addr = memmap[NUCLEI_N_XIP].base;
        break;
    case MSEL_FLASHXIP:
        start_addr = memmap[NUCLEI_N_XIP].base;
        break;
    case MSEL_DDR:
        start_addr = memmap[NUCLEI_N_DRAM].base;
        break;
    default:
        start_addr = memmap[NUCLEI_N_ILM].base;
        break;
    }

       /* reset vector */
    uint32_t reset_vec[8] = {
        0x00000297, /* 1:  auipc  t0, %pcrel_hi(dtb) */
        0x02028593, /*     addi   a1, t0, %pcrel_lo(1b) */
        0xf1402573, /*     csrr   a0, mhartid  */
#if defined(TARGET_RISCV32)
        0x0182a283, /*     lw     t0, 24(t0) */
#elif defined(TARGET_RISCV64)
        0x0182b283, /*     ld     t0, 24(t0) */
#endif
        0x00028067, /*     jr     t0 */
        0x00000000,
        start_addr, /* start: .dword DRAM_BASE */
        0x00000000,
    };

    /* copy in the reset vector in little_endian byte order */
    for (i = 0; i < sizeof(reset_vec) >> 2; i++)
    {
        reset_vec[i] = cpu_to_le32(reset_vec[i]);
    }
    rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
                          memmap[NUCLEI_N_ROM].base, &address_space_memory); //CPU初始化地址

    /* boot rom */
    if (machine->kernel_filename)
    {
		riscv_load_kernel(machine, &s->soc.cpus, start_addr, true, NULL);	//将裸机代码加载到地址start_addr
       // riscv_load_kernel(machine->kernel_filename, start_addr, NULL);  
    }
}


static void nuclei_machine_class_init(ObjectClass *oc, void *data)
{
	MachineClass *mc = MACHINE_CLASS(oc);
    mc->desc = "Nuclei MCU 200T FPGA Evaluation Kit";
	mc->init = nuclei_mcu_machine_init;
	mc->max_cpus = 1;
    mc->default_cpu_type = NUCLEI_N_CPU;
}

static const TypeInfo nuclei_machine_typeinfo = {
	.name = TYPE_NUCLEI_MCU_FPGA_MACHINE,
	.parent = TYPE_MACHINE,
	.class_init = nuclei_machine_class_init,
	.instance_size = sizeof(NucLeiNState),
};
static void nuclei_machine_init_register_types(void)
{
	type_register_static(&nuclei_machine_typeinfo);
}
type_init(nuclei_machine_init_register_types)


参考资料

  1. [完结]从零开始的RISC-V模拟器开发·第一季·2021春季
  2. 新建quard-star开发板

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/336723.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[MySQL]基础的增删改查

目录 1.前置介绍 2.数据库操作 2.1显示当前数据库 2.2创建数据库 2.3 使用数据库 2.4 删除数据库 3.常用数据类型 3.1整型和浮点型 3.2字符串类型 4.表的操作 4.1查看表结构 4.2创建表 4.3删除表 5.重点 5.1操作数据库 5.2常用数据类型 5.3操作表 1.前置介绍 …

IEEE-2024年第五届人工智能、机器人及控制国际会议(AIRC 2024)

IEEE--2024年第五届人工智能、机器人及控制国际会议(AIRC 2024) 会议时间: 2024年4月22-24日 会议地点: 埃及开罗 埃及英国大学 会议网址:AIRC 2024 | Artificial Intelligence, Robotics and Controlhttps://www.airc.org/ 埃及开罗 埃及英国大学 会议组织单位&#xff1a; 征…

【精选】中间件 tomcat漏洞复现

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏…

139基于matlab多旅行商MTSP问题

基于matlab多旅行商MTSP问题&#xff0c;利用遗传算法求解多旅行商问题的算法设计&#xff0c;输出MTSP路径。相互独立路径&#xff0c;同一起点路径。程序已调通&#xff0c;可直接运行。 139 matlab多旅行熵M-TSP (xiaohongshu.com)https://www.xiaohongshu.com/explore/65ab…

宝塔 ftp 服务器发回了不可路由的地址/读取目录列表失败

ftp连接不上&#xff1a; 1.注意内网IP和外网IP 2.检查ftp服务是否启动 &#xff08;面板首页即可看到&#xff09; 3.检查防火墙20端口 ftp 21端口及被动端口39000 - 40000是否放行 &#xff08;如是腾讯云/阿里云等还需检查安全组&#xff09; 4.是否主动/被动模式都不能连接…

2024 Windows10 | 搭建MySQL Cloudbeaver 可视化DBS | Docker Compose本地环境

2024 Windows10 | 搭建MySQL Cloudbeaver 可视化DBS | Docker Compose本地环境 前提条件docker-compose.yml总结 | 用Docker的原因&#xff1f; | 遇到的问题&#xff1f; 前提条件 Windows10 已安装 Docker Desktop提前准备映射用的4个文件夹&#xff08;3个用在 MySQL&#…

51单片机中断

1、什么是中断&#xff1f; CPU在处理某一事件A时&#xff0c;发生了另一事件B请求CPU迅速去处理&#xff08;中断发生&#xff09;&#xff1b; CPU暂时中断当前的工作&#xff0c;转去处理事件B&#xff08;中断响应和中断服务&#xff09;&#xff1b; 待CPU将事件B处理完…

中小企业如何快速融资-----股权融资的四种方式(上)

’在企业融资的多种手段中&#xff0c;股权质押融资、股权交易增值融资、股权增资扩股融资和股权的私募融资&#xff0c;逐渐成为中小企业利用股权实现融资的有效方式。随着市场体系和监管制度的完善&#xff0c;产权市场为投融资者搭建的交易平台日益成熟&#xff0c;越来越多…

Java医药WMS进销存系统

技术架构&#xff1a; jdk8 IntelliJ IDEA maven Mysql5.7 有需要的可以私信我。 系统功能与介绍&#xff1a; 医药进销存系统&#xff0c;主要分两种角色&#xff1a;员工、客户。本系统具有进销存系统的通用性&#xff0c;可以修改为其它进销存系统&#xff0c;如家电进…

c语言-位段

文章目录 前言一、位段是什么&#xff1f;1.1 位段的声明1.2 关于位段的说明 二、位段的内存分配2.1 关于位段内存分配的说明2.2 位段类型为int的内存分配方式&#xff08;Visual Studio 2022&#xff09;2.3 位段类型为char的内存分配方式&#xff08;Visual Studio 2022&…

Vulnhub-LORD OF THE ROOT: 1.0.1

一、信息收集 端口扫描、发现只开了22端口 连接ssh后提示端口碰撞&#xff1a; 端口敲门是一种通过在一组预先指定的关闭端口上产生连接请求&#xff0c;从外部打开防火墙上的端口的方法。一旦收到正确地连接请求序列&#xff0c;防火墙规则就会被动态修改&#xff0c;以允许…

宏任务与微任务执行顺序及对比记录

目录 前言 一、 宏任务、微任务的基本概念 1.宏任务介绍 2.微任务介绍 3.宏任务、微任务发展及出现的原因&#xff1a; 4.宏任务、微任务的基本类型 二、 事件循环模型&#xff08;Event Loop&#xff09; 三、 Promise、async和await 在事件循环中的处理 1.Promise: 2.…

Linux内存管理:(九)内存规整

文章说明&#xff1a; Linux内核版本&#xff1a;5.0 架构&#xff1a;ARM64 参考资料及图片来源&#xff1a;《奔跑吧Linux内核》 Linux 5.0内核源码注释仓库地址&#xff1a; zhangzihengya/LinuxSourceCode_v5.0_study (github.com) 1. 引言 伙伴系统以页面为单位来管…

Pytest 测试框架与Allure 测试报告——Allure2测试报告-L3

目录&#xff1a; allure2报告中添加附件-图片 Allure2报告中添加附件Allure2报告中添加附件&#xff08;图片&#xff09;应用场景Allure2报告中添加附件&#xff08;图片&#xff09;-Python代码示例&#xff1a;allure2报告中添加附件-日志 Allure2报告中添加附件&#xff…

Linux的权限(3)

目录 文件类型 ​d目录文件 -普通文件 l链接文件 b块设备文件 p管道文件 c字符设备文件 文件权限 目录权限 umask 粘滞位 Q1umask权限默认值664/775 Q2"可执行性"权限 Q3"删除"权限 Q4怎么共享一批文件 【1】粘滞位 【2】添加交互人员到所…

第八讲_ArkTS装饰器(五)

ArkTS装饰器&#xff08;五&#xff09; 1. Watch装饰器1.1 Watch装饰器的特点1.2 Watch装饰器使用示例 2. ArkTS装饰器总结 1. Watch装饰器 Watch用于对状态变量的监听。如果需要关注某个状态变量的值是否改变&#xff0c;可以使用Watch为状态变量设置回调函数。 何为状态变…

基于DUP的网络聊天室

基于UDP的网络聊天室的使用&#xff08;select&#xff09;完成的服务器端 #include<head.h> typedef struct de {char name[10];struct sockaddr_in cin;struct de* next; }*linklist; //创建节点 linklist a_creat() {linklist p(linklist)malloc(sizeof(struct de));…

Flink SQL

Flink SQL 来源&#xff1a;B站尚硅谷 sql-client准备 Table API和SQL是最上层的API&#xff0c;在Flink中这两种API被集成在一起&#xff0c;SQL执行的对象也是Flink中的表&#xff08;Table&#xff09;&#xff0c;所以我们一般会认为它们是一体的。Flink是批流统一的处理…

LSTM学习笔记

上一篇文章中我们提到&#xff0c;CRNN模型中用于预测特征序列上下文的模块为双向LSTM模块&#xff0c;本篇中就来针对该模块的结构和实现做一些理解。 Bidirectional LSTM模块结构如下图所示&#xff1a; 在Pytorch中&#xff0c;已经集成了LSTM模块&#xff0c;定义如下&…

Spring成长之路—Spring MVC

在分享SpringMVC之前&#xff0c;我们先对MVC有个基本的了解。MVC(Model-View-Controller)指的是一种软件思想&#xff0c;它将软件分为三层&#xff1a;模型层、视图层、控制层 模型层即Model&#xff1a;负责处理具体的业务和封装实体类&#xff0c;我们所知的service层、poj…
最新文章