使用 Vector 在 Kubernetes 中收集日志

多年来,我们一直在使用 Vector 在我们的 Kubernetes 平台中收集日志,并成功地将其应用于生产中以满足各种客户的需求,并且非常享受这种体验。因此,我想与更大的社区分享它,以便更多的 K8s 运营商可以看到潜力并考虑他们自己的设置的好处。

为此,我将首先简要回顾一下 Kubernetes 中可以收集哪些类型的信息。然后,我将探讨 Vector、它的架构以及我们为什么如此喜欢它。最后,我将分享我们对 Vector 的实际用例和实际经验。

Kubernetes 中的日志记录

让我们看一下 Kubernetes 中的日志。虽然 Kubernetes 的主要目标是在节点上运行容器,但必须记住,这些容器通常是根据 Heroku 的 12 个因素开发的。那么,他们如何在 Kubernetes 中生成日志,谁是其他生产者,日志驻留在何处?

1. 应用程序(pod)日志

在 K8s 中运行的应用程序将其日志写入 stdout 或 .然后,容器运行时收集这些日志并将其存储在一个目录中,该目录通常为 stderr/var/log/pods.它是可配置的,可以根据特定要求进行定制。

2. 节点服务日志

最重要的是,Kubernetes 节点上有一些服务在容器外部运行,例如 containerd 和 kubelet

牢记这些服务并从 syslog 中收集相关消息(例如 SSH 身份验证消息)至关重要。

此外,在某些情况下,容器会将其日志写入特定的文件路径。例如,kube-apiserver,它通常会写入审计日志。因此,需要从相应的节点收集这些日志。

3. Events

Kubernetes 日志收集的另一个重要方面是事件。它们具有独特的结构,因为它们仅存在于 etcd 中,因此为了收集它们,您必须向 Kubernetes API 发出请求。

由于 reason 字段(请参阅下面的示例清单)和 count 字段(用作计数器,随着记录的事件越来越多而递增),因此可以将事件视为指标

此外,还可以将事件收集为跟踪、特征和字段,这有助于创建全面的甘特图,以说明集群中的所有事件。firstTimestamp lastTimestamp

最后,事件提供人类可读的消息(字段),使它们能够作为日志收集。message

apiVersion: v1
kind: Event
count: 1
metadata:
  name: standard-worker-1.178264e1185b006f
  namespace: default
reason: RegisteredNode
firstTimestamp: '2023-09-06T19:08:47Z'
lastTimestamp: '2023-09-06T19:08:47Z'
involvedObject:
  apiVersion: v1
  kind: Node
  name: standard-worker-1
  uid: 50fb55c5-d97e-4851-85c6-187465154db6
message: 'Registered Node standard-worker-1 in Controller'

从本质上讲,Kubernetes 可以收集 Pod 日志、节点服务日志和事件。但是,在本文中,我们将重点关注 Pod 日志和节点服务日志,因为事件需要额外的软件来抓取它们,这涉及到 Kubernetes API,因此将其扩展到我们的范围之外。

什么是 Vector

现在,让我们看看 Vector 是怎么回事。

Vector 显著特征(以及我们使用它的原因)

根据官方网站的说法,Vector 是一个“用于构建可观测性管道的轻量级、超快速工具”。但是,作为 Vector 用户,我想稍微改写一下这个定义,强调与我们的情况最相关的功能:

Vector 是一个开源高效工具,用于构建日志收集管道。

对我们来说,这个定义中有什么重要意义?

  • 开源是我们必须在其上构建可信的、持久的解决方案并将其推荐给其他人的必要条件。
  • 另一个重要因素是 Vector 的效率。如果一个工具是轻量级的,但不能处理大量数据,它就不能满足我们的要求。同样,如果一个工具速度超快,但消耗大量资源,它也不适合作为日志收集器。因此,效率起着至关重要的作用。
  • 值得一提的是,Vector 收集其他类型数据的能力对我们来说并不重要,因为我们目前的重点是日志。

Vector 的一个特殊功能是其与供应商无关。尽管 Vector 归 Datadog 所有,但它与其他各种供应商的解决方案无缝集成,包括 Splunk、Grafana Cloud 和 Elasticsearch Cloud。这种灵活性确保了单个软件解决方案可以跨多个供应商使用。

Vector 提供的另一个令人愉快的好处是它消除了在 Rust 中重写 Go 应用程序以提高其性能的需要。Vector 已经是用 Rust 编写的。

此外,它被设计为高性能。这是如何实现的?Vector 具有一个 CI 系统,可以对任何提议的拉取请求运行基准测试。维护人员会严格评估新功能对 Vector 性能的影响。如果出现任何不利影响,请贡献者及时纠正问题,因为性能仍然是 Vector 团队的首要任务。

此外,Vector 是一个灵活的构建块,我们将在下面详细介绍。

Vector 的架构

作为一种处理工具,Vector 从各种来源收集数据。它通过抓取或充当 HTTP 服务器来积累其他工具摄取的数据来做到这一点。

Vector 擅长转换日志条目,可以将多条消息修改、删除或聚合为一条消息。(不要被下面架构图中所示的转换数量所迷惑,它提供了更多功能。

在此转换之后,Vector 处理消息并将其转发到存储或队列系统。

Vercor 架构:收集日志、转换日志并发送日志

简而言之,Vector 包含一种强大的转换语言,称为矢量重映射语言 (VRL),允许无限数量的可能转换。

矢量重映射语言示例

让我们快速浏览一下 VRL,然后从日志过滤开始。在下面的代码片段中,我们使用 VRL 表达式来确保 severity 字段不等于 :info

[transforms.filter_severity]
type = "filter"
inputs = ["logs"]
condition = '.severity != "info"'

当 Vector 收集 Pod 日志时,它还会使用其他 Pod 元数据(例如 Pod 名称、Pod IP 和 Pod 标签)来丰富日志行。但是,在 Pod 标签中,可能有一些标签只有 Kubernetes 控制器使用,因此对人类用户没有价值。为了获得最佳存储性能,我们建议删除以下标签:

[transforms.sanitize_kubernetes_labels]
type = "remap"
inputs = ["logs"]
source = '''
  if exists(.pod_labels."controller-revision-hash") {
    del(.pod_labels."controller-revision-hash")
  }
  if exists(.pod_labels."pod-template-hash") {
    del(.pod_labels."pod-template-hash")
  }
'''

下面是如何将多个日志行连接成一行的示例:

[transforms.backslash_multiline]
type = "reduce"
inputs = ["logs"]
group_by = ["file", "stream"]
merge_strategies."message" = "concat_newline"
ends_when = '''
  matched, err = match(.message, r'[^\\]$');
  if err != null {
    false;
  } else {
    matched;
  }
'''

在本例中,该字段将向消息字段添加换行符。最重要的是,该部分使用 VRL 表达式来检查一行是否以反斜杠结尾(以连接多行 Bash 注释的方式)。merge_strategies ends_when

日志收集拓扑

好了,是时候探索几种不同的日志收集拓扑以用于 Vector 了。第一种是分布式拓扑,其中 Vector 代理部署在 Kubernetes 集群中的所有节点上。然后,这些代理收集、转换日志并将其直接发送到存储。

第二个是集中式拓扑。在其中,Vector 代理也在所有节点上运行,尽管它们不执行任何复杂的转换:聚合会处理这些转换。这种设置的好处是其出色的负载可预测性。您可以为聚合器部署专用节点,并在必要时对其进行扩展,从而优化 Vector 在集群节点上的资源消耗。

第三种拓扑是基于流的方法。在其中,Kubernetes Pod 会尽快“摆脱”日志。日志被直接摄取到存储中,然后 Elasticsearch 解析日志行并调整索引,这可能是一个占用大量资源的过程。尽管如此,在 Kafka 的案例中,消息被简单地视为字符串。因此,我们可以轻松地从 Kafka 中检索这些日志,以便进一步存储和分析。

请注意,在本文中,我们不会介绍 Vector 充当聚合器的拓扑结构。相反,我们将只关注它作为群集节点上的日志收集代理的角色。

Kubernetes 中的 Vector

我们将如何看待 Kubernetes 中的 Vector?让我们看一下下面的 pod:

Kubernetes 部署为 DaemonSet 后的 Vector 容器

这样的设计乍一看可能很复杂,但这背后是有原因的。我们在这个 pod 中有三个容器:

  1. 第一个运行 Vector 本身。其主要目的是收集日志。
  2. 第二个容器称为 Reloader,使我们的平台用户能够创建自己的日志收集和引入管道。我们有一个特殊的运算符,它假设用户定义的规则并为 Vector 生成配置映射。Reloader 容器验证该配置映射并相应地重新加载 Vector。
  3. 第三个容器 Kube RBAC 代理起着至关重要的作用,因为 Vector 公开了有关其收集的日志行的各种指标。由于此信息可能是敏感的,因此必须通过适当的授权对其进行保护。

Vector 被部署为 DaemonSet(参见下面的列表),因为我们必须在 Kubernetes 集群中的所有节点上部署它的代理。

为了有效地收集日志,我们需要将额外的目录挂载到 Vector 中:

  • 目录,因为如前所述,所有 Pod 的日志都存储在那里。/var/log
  • 最重要的是,我们需要将一个持久卷挂载到 Vector 中,用于存储检查点。每次 Vector 发送日志行时,它都会写入一个检查点,以避免重复发送到同一存储的日志。
  • 此外,我们挂载 以查看节点的时区。localtime
apiVersion: apps/v1
kind: DaemonSet
volumes:
- name: var-log
  hostPath:
    path: /var/log/
- name: vector-data-dir
  hostPath:
    path: /mnt/vector-data
- name: localtime
  hostPath:
    path: /etc/localtime
volumeMounts:
- name: var-log
  mountPath: /var/log/
  readOnly: true
terminationGracePeriodSeconds: 120
shareProcessNamespace: true

关于此列表的其他一些说明:

  1. 挂载目录时,请务必记住启用该模式。此预防措施可防止未经授权修改日志文件。/var/logreadOnly
  2. 我们使用终止宽限期(120 秒)来确保 Vector 在重新启动之前完成分配给它的所有任务。
  3. 共享进程命名空间对于使 Reloader 能够向 Vector 发送信号以重新启动它至关重要。

这总结了我们在 Kubernetes 中部署 Vector 的设置。

接下来,让我们继续讨论最有趣的部分——实际用例。所有这些都不是假设的场景——它们是我们在值班期间遇到的真实世界的停电。

实际用例

案例 #1:设备空间不足

有一天,由于磁盘空间不足,所有 Pod 都被逐出节点。我们展开了调查,发现 Vector 实际上保留了已删除的文件。现在,为什么会这样?

  • Vector 监视目录中的文件。/var/log/pods
  • 当应用程序主动写入日志时,文件大小会超过 10 兆字节的限制,达到 20、30、40、50......兆 字节。
  • 在某些时候,kubelet 会轮换日志文件,使其恢复到原始大小 10 MB。
  • 然而,与此同时,Vector 试图将日志发送给 Loki。不幸的是,Loki 无法处理如此大量的数据!
  • Vector 作为一个负责任的软件,仍然打算将所有日志发送到存储中。

不幸的是,应用程序不会等待所有这些内部操作完成,它们只是继续运行。这导致 Vector 尝试保留所有日志文件,并且随着 kubelet 继续轮换它们,节点上的可用空间会耗尽。

那么,如何解决这个问题呢?

  1. 首先,您可以从调整缓冲区设置开始。默认情况下,如果 Vector 无法将所有日志发送到存储,则会将其存储在内存中。默认缓冲区容量限制为仅 1000 条消息,这是相当低的。您可以将其扩展到 10000。
  2. 或者,将行为从阻止更改为删除新日志也可能有所帮助。通过该行为,Vector 将简单地丢弃其缓冲区中无法容纳的任何日志。drop newest
  3. 另一种选择是使用磁盘缓冲区而不是内存缓冲区。不利的一面是 Vector 会花费更多时间在输入输出操作上。在这种情况下,在决定此方法是否适合您时,必须考虑性能要求。

消除此问题的经验法则是采用流拓扑。通过允许日志尽快离开节点,可以降低生产应用程序中断的风险。我们当然不想因为监控问题而毁掉生产集群,不是吗?

最后,如果你足够勇敢,你可以用它来调整一个进程的最大打开文件数。但是,我不推荐这种方法。sysctl

案例#2:Prometheus “爆炸”

Vector 在一个节点上运行并执行几个不同的任务。它从 Pod 收集日志,并公开收集的日志行数和遇到的错误数等指标。这要归功于 Vector 卓越的可观测性功能。

但是,许多指标都有特定的文件标签,这可能会导致高基数,这是 Prometheus 无法消化的。这是因为当 Pod 重新启动时,Vector 开始公开新 Pod 的指标,同时仍保留旧 Pod 的指标,这意味着这些指标具有不同的文件标签。此行为是 Prometheus 导出器工作方式(按设计)的结果。不幸的是,在几个吊舱重新启动后,这种情况导致普罗米修斯的负载突然激增,随后发生了“爆炸”。

为了解决这个问题,我们应用了一个指标标签规则来消除麻烦的文件标签。这解决了 Prometheus 的问题——它现在运行正常。

然而,一段时间后,Vector 遇到了自己的问题。问题是,Vector 消耗了越来越多的内存来存储所有这些指标,导致内存泄漏。为了纠正这个问题,我们在 Vector 中使用了一个全局选项,称为:expire_metric_secs

  • 如果将其设置为 60 秒,Vector 将检查它是否仍在从这些 pod 收集数据。
  • 否则,它将停止导出这些文件的指标。

尽管此解决方案有效运行,但它也影响了其他一些指标,例如 Vector 组件错误指标。如下图所示,最初记录了 7 个错误,但在触发过期后,数据中出现了差距。

不幸的是,Prometheus,尤其是 PromQL 函数(和类似函数),无法处理这样的数据差距。相反,Prometheus 希望指标在整个时间段内公开。rate

为了解决这个限制,我们修改了 Vector 的代码,以完全消除文件标签——只需删除几个地方的“文件”条目即可。事实证明,此解决方法已成功解决该问题。

案例 #3:Kubernetes 控制平面中断

有一天,我们注意到当 Vector 实例同时重启时,Kubernetes 控制平面往往会失败。在分析我们的仪表板后,我们确定这个问题源于过度的内存使用,主要是 etcd 内存消耗。

为了更好地理解根本原因,我们首先需要深入研究 Kubernetes API 的内部工作原理。

当 Vector 实例启动时,它向 Kubernetes API 发出请求,以使用 Pod 元数据填充缓存。如前所述,Vector 依赖于此元数据来丰富日志条目。LIST

因此,每个 Vector 实例都请求 Kubernetes API 为 Vector 运行的同一节点上的 Pod 提供元数据。但是,对于每个单独的请求,Kubernetes API 都会从 etcd 读取。

etcd 用作键值数据库。键由资源的种类、命名空间和名称组成。对于节点上涉及 110 个 Pod 的每个请求,Kubernetes API 都会访问 etcd 并检索所有 Pod 的数据。这会导致 kube-apiserver 和 etcd 的内存使用量激增,最终导致它们失败。

此问题有两种可能的解决方案。首先,我们可以采用缓存读取方法。在这种方法中,我们指示 API 服务器从其现有的缓存中读取数据,而不是从 etcd 中读取数据。尽管在某些情况下可能会出现不一致,但这对于监视工具来说是可以接受的。不幸的是,这样的功能在 Kubernetes Rust 客户端中不可用。因此,我们向 Vector 提交了一个拉取请求,启用了该选项。use_apiserver_cache=true

第二种解决方案涉及利用 Kubernetes 优先级和公平性 API 的独特功能。问题是,你可以定义一个请求队列:

apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
kind: PriorityLevelConfiguration
metadata:
  name: limit-list-custom
spec:
  type: Limited
  limited:
    assuredConcurrencyShares: 5
    limitResponse:
      queuing:
        handSize: 4
        queueLengthLimit: 50
        queues: 16
      type: Queue

...并将其与特定服务帐户相关联:

apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
kind: FlowSchema
metadata:
  name: limit-list-custom
spec:
  priorityLevelConfiguration:
    name: limit-list-custom
  distinguisherMethod:
    type: ByUser
  rules:
  - resourceRules:
    - apiGroups: [""]
      clusterScope: true
      namespaces: ["*"]
      resources: ["pods"]
      verbs: ["list", "get"]
    subjects:
    - kind: ServiceAccount
      serviceAccount:
        name: ***
        namespace: ***

通过此类配置,您可以限制并发预检请求的数量,并有效降低峰值的严重性,从而最大程度地减少其影响。

最后,您可以使用 kubelet API 通过向 /pods 端点发送请求来获取 Pod 元数据,而不是依赖 Kubernetes API。但是,此功能尚未在 Vector 中实现。

结论

Vector 非常适合平台工程工作,因为它具有灵活性、多功能性和日志摄取和传输选项的广度。我全心全意地推荐 Vector,并鼓励您充分利用它的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/340284.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[足式机器人]Part2 Dr. CAN学习笔记- 最优控制Optimal Control Ch07-1最优控制问题与性能指标

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记 - 最优控制Optimal Control Ch07-1最优控制问题与性能指标

亚马逊KYC审核的重要性,所需提交的文件有哪些?—站斧浏览器

亚马逊KYC审核的重要性有哪些? KYC审核是亚马逊对卖家身份的一种验证,确保卖家遵守相关法规。只有通过审核的卖家才能在欧洲平台进行销售。因此,正确理解和应对KYC审核对于卖家来说至关重要。 注册完成后立即触发:新注册的卖家可…

【小沐学GIS】基于C#绘制三维数字地球Earth(OpenGL)

🍺三维数字地球系列相关文章如下🍺:1【小沐学GIS】基于C绘制三维数字地球Earth(OpenGL、glfw、glut)第一期2【小沐学GIS】基于C绘制三维数字地球Earth(OpenGL、glfw、glut)第二期3【小沐学GIS】…

TSKE 系列液氮低温恒温器

锦正茂科技有限公司研发的液氮型低温恒温器,利用液氮作为降温媒介,标准恒温器可实现快速降温至液氮温度(约20min),其工作原理是在恒温器内部液氮腔内装入液氮,通过调整控温塞与冷指的间隙来保持冷指的漏热稳…

使用docker安装使用AWVS渗透常用工具

AWVS安装 AWVS我是装在Docker上的,在VPS中部署好Docker后,敲入以下命令 docker pull secfa/docker-awvs #拉取镜像 docker run -it -d -p 8443:3443 secfa/docker-awvs #将Docker的3443端口映射到VPS的8443端口访问https://VPS的IP:8443 默认账号密码&…

如何查看苹果手机的CPU型号?

摘要 本文将介绍如何在苹果手机上查看CPU型号。通过简单的设置操作,您可以轻松地获取您的iPhone的CPU型号信息。此外,我们还将介绍一些克魔助手可以提供的其他功能,如内存监控、GPU性能监控和网络抓包等,以帮助您优化和提升iOS应…

AI相关资料

文心一格收费,有免费额度 通义万相_AI创意作画_AI绘画_人工智能-阿里云 AI AIchatOS 即时 AI - 生成式图像创作及 UI 设计工具 Framer — The internet is your canvas

【pytorch框架】使用 PyTorch 进行深度学习

1.Pytorch介绍 PyTorch 是由 Facebook 创建和发布的用于深度学习计算的 Python 库。它起源于早期的库 Torch 7,但完全重写。 它是两个最受欢迎的深度学习库之一。PyTorch 是一个完整的库,能够训练深度学习模型以及在推理模式下运行模型,并支…

stm32内存分配博客笔记

原文: stm32内存分配 笔记: 1、向量表与代码段;根据Cortex-M3权威指南描述,系统复位后,在向量表异常0处保存的是堆栈起始地址,而后紧跟中断向量表 2、可以从链接脚本.ld文件中看到终端向量表第一个被链接…

一篇文章带你了解 什么是u(ustd)带你了解他的前世今生

在数字货币的繁荣世界中,USDT无疑是其中一位重要的角色。它的前世今生,是一个从无到有,从小到大,经历了种种波折和争议的故事。 2014年11月下旬,一个名为Realcoin的注册地为马恩岛和香港的公司决定改变自己的名字&…

如何创建vite项目!

vite 官网:vite是一种新型前端构建工具,能够显著提升前端开发体验 网络:vite是一个静态服务器,也可以说是一个开发的构建工具 它的目标就是提供快速的开发体验和性能优化 vite优点与缺点 Vite 优点Vite 缺点开发服务器比 Webp…

flink部署模式介绍

在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink 为各种场景提供了不同的部署模式,主要有以下三种,它们的区别主要在于: 集群的生命周期以及资源的分配方式;应用的 main 方法到…

宠物空气净化器推荐哪个好?实惠的猫用猫用净化器牌子测评

作为宠物主人,我们深知养宠物的乐趣和责任,但同时也面临着一些挑战,比如宠物掉毛、异味和空气质量等问题。这就是为什么越来越多的家庭选择宠物空气净化器,为我们创造一个清新、健康的室内环境。 无论我们多么爱我们的毛茸茸伙伴…

[RK-Linux] 移植Linux-5.10到RK3399(九)| 配置USB-A支持HOST功能

文章目录 一、原理图二、设备树三、功能验证一、原理图 RK3399 的 USB 控制器接口如图: 其中 USB PHY0 的 HOST0_DP、HOST0_DM 网络没有使用。 USB PHY0 的 TYPEC0_DP、TYPEC0_DM、TYPEC0_U2VBUSDET 网络用作 type-c 接口。 USB PHY1 的 HOST1_DP、HOST1_DM 网络用作 USB2.…

仰暮计划|“日子过得苦为什么还要生三个小孩呢”

故事的主角是我的奶奶,今年74岁。她的个子不高,但她的脊背笔挺,透露着难掩的坚毅,从她的独家记忆中,更证实了这一点。 少年担责 “奶奶,给我讲讲你小时候吧。” 还没开口,奶奶的眼中泛起了点点…

C# wpf利用Clip属性实现截屏框

wpf截屏系列 第一章 使用GDI实现截屏 第二章 制作截屏框(本章) ______第一节 使用DockPanel制作截屏框 ______第二节 利用Clip属性实现截屏框(本节) 第三章 实现截屏框热键截屏 第四章 实现截屏框实时截屏 第五章 使用ffmpeg命令行实现录屏 文章目录 wp…

pnpm使用

文章目录 前言一、安装二、设置镜像三、使用总结如有启发,可点赞收藏哟~ 前言 pnpm 全称 performant npm,意思为 高性能的 npm 速度快、节约磁盘空间、支持 monorepo、安全性高。 一、安装 npm install -g pnpm or brew install pnpm二、设置镜像 #…

每日一题 670. 最大交换(中等,后缀)

先考虑最简单的情况,如果在首位之后有比它大的数字,那么显然交换这两个数字是最优解其次如果比它大的数字在后面不止出现了一次,那面显然是用最后一次出现的那个位置进行交换(要使值最大,低位要小,高位要大…

MAXWELL

MAXWELL 一、maxwell是什么 maxwell 官网地址:http://maxwells-daemon.io/ 因为官网是纯英文的,倒是不难懂,但总觉得写的略粗糙(也可能笔者英文水平确实拉胯,有待提高)。所以还是自己百度了一下。 当my…
最新文章