牛客周赛 Round 20 解题报告 | 珂学家 | 状压DP/矩阵幂优化 + 前缀和的前缀和


前言

alt


整体评价

这场比赛很特别,是牛客周赛的第20场,后两题难度直线飙升了。

前四题相对简单,E题是道状压题,历来状压题都难,F题压轴难题了,感觉学到了不少。


A. 赝品

先求的最大值

然后统计非最大值的个数,即可。

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));

        int n = sc.nextInt();
        int[] arr = new int[n];
        for (int i = 0; i < n; i++) {
            arr[i] = sc.nextInt();
        }

        // 获取数组的最大值
        int maxValue = Arrays.stream(arr).max().getAsInt();
        // 过滤最大值,并计数
        System.out.println(Arrays.stream(arr).filter(x -> x != maxValue).count());
    }

}

B. 小红的01连续段

状态机DP

令opt[n][2], 0表示第n字母以0结尾,往前扩展的最长连续0子串的数量,1状态亦是如此定义。

则遇到‘0’, ‘1’, ‘?’, 会有不同的转移

最后的结果为

m a x i = 0 i = n − 1 ( o p t [ i ] [ s ] ) , s ∈ ( 0 , 1 ) max_{i=0}^{i=n-1}(opt[i][s]), s\in(0,1) maxi=0i=n1(opt[i][s]),s(0,1)

这边可以滚动优化,使得时间复杂度降为2个变量

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        String s = sc.next();

        int res = 0;
        int s0 = 0, s1 = 0;
        for (char c: s.toCharArray()) {
            if (c == '0') {
                s0++;
                s1 = 0;
            } else if (c == '1') {
                s1++;
                s0 = 0;
            } else {
                // 遇到?号
                s0++;
                s1++;
            }
            res = Math.max(res, Math.max(s0, s1));
        }
        System.out.println(res);
    }
    
}

C. 小红的01串构造

这题挺有趣的

其实你只要观察到

111000100

110001100

这两个是等价的

即聚合的1从一个组,转移另一个组,不改变相邻的总对数

因此可以构造一个,所有相邻对数t都在第一个组中,然后多余的1,独立为一组

这样保证 t+1<=k && t+1 + (k - (t+1)) * 2 <= n, 必然有解

import java.io.*;
import java.util.*;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt(), k = sc.nextInt(), t = sc.nextInt();

        if (k > n || k - 1 < t) {
            System.out.println(-1);
        } else {
            int k1 = t + 1;
            int k2 = k - t - 1;
            if (k1 + k2 * 2 <= n) {
                StringBuilder sb = new StringBuilder();
                for (int i = 0; i < k1; i++) sb.append("1");
                for (int i = 0; i < k2; i++) sb.append("01");
                for (int i = k1 + k2 * 2; i < n; i++) sb.append("0");
                System.out.println(sb);
            } else {
                System.out.println(-1);
            }
        }
    }

}

D. 小红的数位删除

这题,其实题目少了一个重要的条件

最后a,b不能为0

1. 二进制枚举

因为只有9位数,所以可以使用二进制枚举

这样时间复杂度为 O ( 2 9 ∗ 2 9 ∗ 9 ∗ 9 ) = 2 ∗ 1 0 8 O(2^9 * 2^9 * 9 * 9)=2*10^8 O(292999)=2108, 枚举常数小,在合理的范围内

  • 从大到小枚举
  • 引入剪枝
import java.io.*;
import java.util.*;
import java.util.function.BiFunction;

public class Main {

    public static void main(String[] args) {

        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        char[] astr = sc.next().toCharArray();
        char[] bstr = sc.next().toCharArray();

        int inf = Integer.MAX_VALUE;
        int n1 = astr.length, n2 = bstr.length;
        int ans = inf;

        BiFunction<Integer, char[], Integer> calculate = (s, str) -> {
            int val = 0;
            for (int t = 0; t < str.length; t++) {
                if ((s & (1 << t)) != 0) {
                    val = val * 10 + (str[t] - '0');
                }
            }
            return val;
        };

        for (int i = (1 << n1)  - 1; i > 0; i--) {
            int r1 = n1 - Integer.bitCount(i);
            if (r1 >= ans) continue;

            int a = calculate.apply(i, astr);
            if (a == 0) continue;

            for (int j = (1 << n2) - 1; j > 0; j--) {
                int r2 = n2 - Integer.bitCount(j);
                if (r1 + r2 >= ans) continue;
                int b = calculate.apply(j, bstr);
                if (b == 0) continue;
                if (a % b == 0 || b % a == 0) {
                    ans = Math.min(ans, r1 + r2);
                }
            }
        }
        System.out.println(ans == inf ? -1 : ans);

    }

}

2. BFS解

这题的话,感觉还可以BFS,这样的话,找到解后可以立马退出。


E. 小红的漂亮串

思路: 状压DP

这题有’red’, 'der’限制,所以直接想O(1)求容斥解,行不通.

1. 正向状压解

回到状压的思路

引入5种状态

  • 0, any是1,2,3,4以外的所有状态
  • 1, 以r字母结尾
  • 2,以d字母结尾
  • 3,以re字母结尾
  • 4,以de字母结尾

先聊下如何解决

Q: 子串不包含‘der’

只要在递推过程中, 对der的状态构造忽略即可

Q: 需要包含至少一个‘red’

额外引入一维的状态0/1, 表示当前字符串以包含red, 和暂时不包含red


设计好了状态, 以及解决思路

来看一下如何设计状态转移

令 dp[2][5], 前一维表示是否包含’red’, 后一维表示以什么结尾的状态

DP递推的话,以下两种都可以

  • 填表法
  • 刷表法

为啥要两者都介绍下呢?

主要是如果某一种实现,遇到了wa,这个时候可以用另一种思路去check/verify, 看看哪里的转移有遗漏。

状态迁移还是太多,这边选用一个 (0, 3)来分析,它涉及一个阶级跃迁

alt

import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt();

        // any
        // r, d
        // re, de,
        long mod = 10_0000_0007l;

        // red, der
        long[][] dp = new long[2][5];
        dp[0][0] = 24;
        dp[0][1] = dp[0][2] = 1;

        for (int i = 1; i < n; i++) {
            long[][] dp2 = new long[2][5];

            // 不包含red字符串(在本身的圈子内转移)
            dp2[0][0] = (dp[0][0] * 24 % mod + dp[0][1] * 23 % mod + dp[0][2] * 23 % mod + dp[0][3] * 24 % mod + dp[0][4] * 24 % mod) % mod;
            dp2[0][1] = (dp[0][0] + dp[0][1] + dp[0][2] + dp[0][3]) % mod;
            dp2[0][2] = (dp[0][0] + dp[0][1] + dp[0][2] + dp[0][4]) % mod;
            dp2[0][3] = dp[0][1];
            dp2[0][4] = dp[0][2];

            // 包含red字符串(在本身的圈子内转移)
            dp2[1][0] = (dp[1][0] * 24 % mod + dp[1][1] * 23 % mod + dp[1][2] * 23 % mod + dp[1][3] * 24 % mod + dp[1][4] * 24 % mod) % mod;
            dp2[1][1] = (dp[1][0] + dp[1][1] + dp[1][2] + dp[1][3]) % mod;
            dp2[1][2] = (dp[1][0] + dp[1][1] + dp[1][2] + dp[1][3] + dp[1][4]) % mod;
            dp2[1][3] = dp[1][1];
            dp2[1][4] = dp[1][2];
            
            // 非常俏皮的阶级跃迁(最特别),单独拎出来
            dp2[1][2] = (dp2[1][2] + dp[0][3]) % mod;

            dp = dp2;
        }

        // 只累加包含red字符串的状态
        long res = 0;
        for (int i = 0; i < 5; i++) {
            res += dp[1][i];
            res %= mod;
        }
        System.out.println(res);
    }

}

2. 容斥状压解

这题还可以容斥解,不过这个容斥解也是基于状压的

大致的思路

  • 求解不存在der的字符串总个数S1
  • 求解同时不存在der,red的字符串总个数S2
  • S1 - S2, 即为不存在der,但是存在red的字符串总方案数

3. 矩阵幂优化

如果n在大点,n只要大于10^9,那矩阵幂才是唯一解

矩阵的构造,源于方法一,把2*5摊平成为1维

然后构建一个状态转移矩阵即可。

import java.io.BufferedInputStream;
import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt();

        long mod = 10_0000_0007l;

        long[][] translate = new long[][] {
            {24, 23, 23, 24, 24, 0, 0, 0, 0, 0},
            {1, 1, 1, 1, 0, 0, 0, 0, 0, 0},
            {1, 1, 1, 0, 1, 0, 0, 0, 0, 0},
            {0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
            {0, 0, 0, 0, 0, 24, 23, 23, 24, 24},
            {0, 0, 0, 0, 0, 1, 1, 1, 1, 0},
            {0, 0, 0, 1, 0, 1, 1, 1, 1, 1},
            {0, 0, 0, 0, 0, 0, 1, 0, 0, 0},
            {0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
        };

        Matrix matrix = new Matrix(translate);
        Matrix matrix2 = Matrix.quickPow(matrix, n, mod);

        Matrix vec = new Matrix(new long[][] {{1}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}});
        Matrix res = matrix2.mul(vec, mod);

        long ans = 0;
        for (int i = 5; i < 10; i++) {
            ans += res.arr[i][0];
            ans %= mod;
        }
        System.out.println(ans);
    }

    static 
    class Matrix {
        long[][] arr;
        int r, c;
        Matrix(long[][] arr) {
            this.arr = arr;
            this.r = arr.length;
            this.c = arr[0].length;
        }

        Matrix mul(Matrix other, long mod) {
            int nr = this.r, nc = other.c;
            long[][] res = new long[nr][nc];
            for (int i = 0; i < nr; i++) {
                for (int j = 0; j < nc; j++) {
                    long temp = 0;
                    for (int k = 0; k < c; k++) {
                        temp = (temp + arr[i][k] * other.arr[k][j] % mod) % mod;
                    }
                    res[i][j] = temp;
                }
            }
            return new Matrix(res);
        }

        static Matrix E(int n) {
            long[][] arr = new long[n][n];
            for (int i = 0; i < n; i++) {
                arr[i][i] = 1;
            }
            return new Matrix(arr);
        }

        static Matrix quickPow(Matrix base, long k, long mod) {
            Matrix r = Matrix.E(base.r);
            while (k > 0) {
                if (k % 2 == 1) {
                    r = r.mul(base, mod);
                }
                k /= 2;
                base = base.mul(base, mod);
            }
            return r;
        }
    }

}

F. 小红的零

整数末尾0的个数,取决于2和5的因子个数的最小值.

难点就在于:最小值


先来看2道基础题

对于一个数组arr, 给予一个x, 求 ∑ i = 0 i = n − 1 ∣ a r r [ i ] − x ∣ \sum_{i=0}^{i=n-1}|arr[i] - x| i=0i=n1arr[i]x

这题的思路,就是对arr进行排序,然后绝对值去掉,这样就划分为2个部分,一部分小于x,另一部分大于等于x

利用前缀和预处理,可以二分到分界点, O ( l o g ( n ) ) O(log(n)) O(log(n))解决问题

求一个数组的所有子区间(2的因子个数)累加和

这是弱化版本,那其思路遍历右端点,然后累计

设S(i)为第i元素为右端点的所有区间的累加和

S(i) = S(i-1) + (i+1)*f(i)

最终S(i)的累加和 \sum S(i)


而这题的核心思路,其实上延续了类似思想

令f(x)为前x项的2因子的前缀和,
g(x)为前x项的5因子的前缀和

对于某个区间[l, r]

贡献 = m i n ( f ( r ) − f ( l − 1 ) , g ( r ) − g ( l − 1 ) ) 贡献 = min(f(r) - f(l - 1), g(r) - g(l - 1)) 贡献=min(f(r)f(l1),g(r)g(l1))

z ( x ) = f ( x ) − g ( x ) z(x) = f(x) - g(x) z(x)=f(x)g(x)

则区间[l, r] 其贡献为

  • z ( r ) − z ( l − 1 ) ≥ 0 z(r) - z(l - 1) \ge 0 z(r)z(l1)0

    • 贡献为 g® - g(l - 1)
  • z ( r ) − z ( l − 1 ) < 0 z(r) - z(l - 1) \lt 0 z(r)z(l1)<0

    • 贡献为f® - f(l - 1)

本质上这题的巧妙之处在于

  • 维护2因子多的区间(累加和,个数)
  • 维护5因子多的区间 (累加和,个数)

而这个因子多少,是一个变动的过程,根据右端点来决定范围

  • 大于z(x),为2因子多的区间

    n x ∗ f ( x ) − ∑ y ∈ ( z ( y ) > z ( x ) ) f ( y ) n_x * f(x) - \sum_{y\in({z(y)>z(x)})} f(y) nxf(x)y(z(y)>z(x))f(y)

  • 小于等于z(x), 则为5因子多的区间

    n y ∗ g ( x ) − ∑ y ∈ ( z ( y ) < = z ( x ) ) g ( y ) n_y * g(x) - \sum_{y\in({z(y)<=z(x))}} g(y) nyg(x)y(z(y)<=z(x))g(y)

所以这边采用4个树状数组

fw2, fwc2代表2因子的前缀和f(x),对应2因子的区间个数,

fw5, fwc5代表5因子的前缀和g(x),对应5因子的区间个数

而把 z(x) 作为 树状数组的 index-key

因为2因子和5因子个数,最多30n,考虑到负值,最多60n

引入offset作为偏移,不需要离散化

感觉这题思路还是挺绕的,可能直接看代码,更容易理解

感觉这题掺杂了 前缀和的前缀和

import java.io.*;
import java.util.*;

public class Main {

    static class BIT {
        int n;
        long[] arr;
        public BIT(int n) {
            this.n = n;
            this.arr = new long[n + 1];
        }
        void update(int p, long v) {
            while (p <= n) {
                this.arr[p] += v;
                p += p&-p;
            }
        }
        long query(int p) {
            long res = 0;
            while (p > 0) {
                res += this.arr[p];
                p -= p&-p;
            }
            return res;
        }
    }

    static int split(int v, int b) {
        int cnt = 0;
        while (v % b == 0) {
            v /= b;
            cnt++;
        }
        return cnt;
    }

    public static void main(String[] args) {
        Scanner sc = new Scanner(new BufferedInputStream(System.in));
        int n = sc.nextInt();

        int mx = 60 * n; // 2^30 > 1e9, 因为绝对值的问题,所以30*2*n
        int offset = 30 * n; // 引入offset,是因为这边没有离散化,而是做了一个偏移,平衡负值

        BIT fw2 = new BIT(mx);  // 2的因子累加和
        BIT fwc2 = new BIT(mx); // 2的因子计数

        BIT fw5 = new BIT(mx);  // 5的因子累加和
        BIT fwc5 = new BIT(mx); // 5的因子计数

        long res = 0;
        int acc2 = 0, acc5 = 0;
        int diff = 0;
        for (int i = 0; i < n; i++) {
            // 前缀和为key
            fw2.update(diff + offset, acc2);
            fwc2.update(diff + offset, 1);
            fw5.update(diff + offset, acc5);
            fwc5.update(diff + offset, 1);

            int v = sc.nextInt();
            int n2 = split(v, 2);
            int n5 = split(v, 5);
            diff += (n2 - n5);
            acc2 += n2;
            acc5 += n5;

            // 进行统计计算
            long sum2 = fw2.query(mx) - fw2.query(diff + offset);
            long cnt2 = fwc2.query(mx) - fwc2.query(diff + offset);
            long sum5 = fw5.query(diff + offset);
            long cnt5 = fwc5.query(diff + offset);
            res += (acc2 * cnt2 - sum2) + (acc5 * cnt5 - sum5);
        }

        System.out.println(res);

    }

}

写在最后

alt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/340582.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Haar小波下采样模块

论文原址&#xff1a;Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation - ScienceDirect 原文代码&#xff1a;HWD/HWD.py at main apple1986/HWD (github.com) 介绍 深度卷积神经网络 &#xff08;DCNN&#xff09; 通…

CPMS靶场练习

关键&#xff1a;找到文件上传点&#xff0c;分析对方验证的手段 首先查看前端发现没有任何上传的位置&#xff0c;找到网站的后台&#xff0c;通过弱口令admin 123456可以进入 通过查看网站内容发现只有文章列表可以进行文件上传&#xff1b;有两个图片上传点 图片验证很严格…

《WebKit 技术内幕》学习之六(2): CSS解释器和样式布局

2 CSS解释器和规则匹配 在了解了CSS的基本概念之后&#xff0c;下面来理解WebKit如何来解释CSS代码并选择相应的规则。通过介绍WebKit的主要设施帮助理解WebKit的内部工作原理和机制。 2.1 样式的WebKit表示类 在DOM树中&#xff0c;CSS样式可以包含在“style”元素中或者使…

SpringBoot异常处理和单元测试

学习目标 Spring Boot 异常处理Spring Boot 单元测试 1.SpringBoot异常处理 1.1.自定义错误页面 SpringBoot默认的处理异常的机制&#xff1a;SpringBoot 默认的已经提供了一套处理异常的机制。一旦程序中出现了异常 SpringBoot 会向/error 的 url 发送请求。在 springBoot…

移动开发行业——鸿蒙OS NEXT开出繁花

1月18日&#xff0c;华为宣布HarmonyOS NEXT开发者预览版开放申请&#xff0c;根据官方注解&#xff0c;这个版本的鸿蒙系统有个更通俗易懂的名字——“星河版”&#xff0c;也被称为“纯血”鸿蒙。 根据官方解释&#xff0c;之所以取名星河版&#xff0c;寓意鸿蒙OS NEXT就像…

28、web攻防——通用漏洞SQL注入HTTP头XFFCOOKIEPOST请求

文章目录 $_GET&#xff1a;接收get请求&#xff0c;传输少量数据&#xff0c;URL是有长度限制的&#xff1b; $_POST&#xff1a;接收post请求&#xff1b; $_COOKIE&#xff1a;接收cookie&#xff0c;用于身份验证&#xff1b; $_REQUEST&#xff1a;收集通过 GET 、POST和C…

线性代数:矩阵运算(加减、数乘、乘法、幂、除、转置)

目录 加减 数乘 矩阵与矩阵相乘 矩阵的幂 矩阵转置 方阵的行列式 方阵的行列式&#xff0c;证明&#xff1a;|AB| |A| |B| 加减 数乘 矩阵与矩阵相乘 矩阵的幂 矩阵转置 方阵的行列式 方阵的行列式&#xff0c;证明&#xff1a;|AB| |A| |B|

JVM的组成部分(类加载器、运行时数据区、执行引擎、本地库接口)

目录 JVM作用 JVM构成 1.类加载器 类加载子系统&#xff1a; 类加载器的分类&#xff1a; 双亲委派机制&#xff1a; 2.运行时数据区 程序计数器 虚拟机栈 本地方法栈 堆 方法区 3.执行引擎 4.本地库接口 JVM作用 jvm是将字节码文件加载到虚拟机中&#xff0c;…

特征融合篇 | YOLOv8 引入长颈特征融合网络 Giraffe FPN

在本报告中,我们介绍了一种名为DAMO-YOLO的快速而准确的目标检测方法,其性能优于现有的YOLO系列。DAMO-YOLO是在YOLO的基础上通过引入一些新技术而扩展的,这些技术包括神经架构搜索(NAS)、高效的重参数化广义FPN(RepGFPN)、带有AlignedOTA标签分配的轻量级头部以及蒸馏增…

RV1103与FPGA通过MIPI CSI-2实现视频传输,实现网络推流

RV1103与FPGA通过MIPI CSI-2实现视频传输&#xff0c;实现网络推流。 一&#xff1a;图像格式 支持图像格式如下&#xff1a; [0]: NV16 (Y/CbCr 4:2:2) Size: Stepwise 64x64 - 2304x1296 with step 8/8 [1]: NV61 (Y/CrCb 4:2:2) Size: Stepwise 64x64 - 2304x1296 with …

POI及EasyExcel学习笔记

POI及EasyExcel学习笔记 组件、工具 POI-Excel概述 Apache POI 结构&#xff1a; HSSF &#xff0d; 提供读写[Microsoft Excel](https://baike.baidu.com/item/Microsoft Excel)格式档案的功能。XSSF &#xff0d; 提供读写Microsoft Excel OOXML格式档案的功能。HWPF &am…

美团收银餐饮版培训教程

硬件连接方式及介绍: 双屏收银机 收银一体机 双屏收银机连接图 收银一体机连接图 前台打印机 后厨打印机 标签打印机 前台打印机连接图 后厨打印机连接图 其它收银机配件 软件前期设置 1、机器联网 点开桌面的设置&#xff0c;点击更多&#xff0c;点击以太网&#xff0c;最上…

Linux与windows互相传输文件之rzsz命令

文章目录 关于rzsz安装软件使用命令方法一&#xff1a;直接拖拽方法二&#xff1a;直接在终端输入rz 关于rzsz 这个工具用于 windows 机器和远端的 Linux 机器通过 XShell 传输文件 安装完毕之后可以通过拖拽的方式将文件上传过去 首先看一下我们的机器可以使用网络吗&#xff…

QT upd测试

QT upd测试 本次测试将服务器和客户端写在了一个工程下&#xff0c;代码如下 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QUdpSocket> #include<QTimer>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACE…

C++的流库

1.流的概念 “流”&#xff0c;即“流动”的意思&#xff0c;是物质从一处向另一处流动的过程。在计算机这边通常是指对一种有序连续且具有方向性的数据的抽象描述。 C 中的流一般指两个过程的统一&#xff1a; 信息从外部输入设备&#xff08;键盘&#xff09;向计算机内部…

网页设计-用户体验

Use Cases (用例) 用例是用户如何在网站上执行任务的书面描述&#xff0c;从用户的角度描述了系统响应请求时的行为。每个用例都是用户实现目标的一系列简单的步骤。简言之&#xff0c;用例是一种用于描述系统如何满足用户需求的方法。 用例的好处 1. 明确需求&#xff1a; Use…

【测试入门】测试用例经典设计方法 —— 因果图法

01、因果图设计测试用例的步骤 1、分析需求 阅读需求文档&#xff0c;如果User Case很复杂&#xff0c;尽量将它分解成若干个简单的部分。这样做的好处是&#xff0c;不必在一次处理过程中考虑所有的原因。没有固定的流程说明究竟分解到何种程度才算简单&#xff0c;需要测试…

Flutter 滚动布局:sliver模型

一、滚动布局 Flutter中可滚动布局基本都来自Sliver模型&#xff0c;原理和安卓传统UI的ListView、RecyclerView类似&#xff0c;滚动布局里面的每个子组件的样式往往是相同的&#xff0c;由于组件占用内存较大&#xff0c;所以在内存上我们可以缓存有限个组件&#xff0c;滚动…

每天五分钟计算机视觉:掌握迁移学习使用技巧

本文重点 随着深度学习的发展,迁移学习已成为一种流行的机器学习方法,它能够将预训练模型应用于各种任务,从而实现快速模型训练和优化。然而,要想充分利用迁移学习的优势,我们需要掌握一些关键技巧。本文将介绍这些技巧,帮助您更好地应用迁移学习技术。 迁移学习的关键…

HCIP-BGP选路实验

一.实验拓扑图 二.详细配置 R1 interface GigabitEthernet0/0/0 ip address 12.1.1.1 255.255.255.0interface LoopBack0 ip address 1.1.1.1 255.255.255.0interface LoopBack1 ip address 10.1.1.1 255.255.255.0bgp 1 router-id 1.1.1.1 peer 12.1.1.2 as-number 2ipv4-fa…