【C++入门到精通】特殊类的设计 | 单例模式 [ C++入门 ]

在这里插入图片描述

阅读导航

  • 引言
  • 一、设计模式概念(了解)
  • 二、单例模式
    • 1. 饿汉模式
      • (1)概念
      • (2)模拟实现
      • (3)优缺点
      • (4)适用场景
    • 2. 懒汉模式
      • (1)概念
      • (2)模拟实现
        • 🚩思路一(双检查加锁,常规思路)
        • 🚩思路二(使用静态局部变量的方式来实现单例模式)
      • (3)优缺点
      • (4)适用场景
  • 温馨提示

引言

在面向对象编程中,特殊类是指具有特定属性或限制的类,这些属性或限制使其在设计和使用上与常规类不同。在上一篇文章中,我们讨论了一些特殊类,如只能在堆上创建对象的类、只能在栈上创建对象的类以及禁止拷贝和继承的类。

在本文中,我们将继续探讨特殊类的设计,着重介绍单例模式。单例模式是一种常见的设计模式,它确保一个类只有一个实例,并提供了全局访问点。在许多情况下,我们需要确保只有一个对象来协调系统操作或管理共享资源,而单例模式正是解决这类问题的理想选择

本文将深入研究单例模式的原理和实现方式。我们将介绍几种常见的单例模式实现方法,包括饿汉式、懒汉式、双重检查锁定和静态内部类。我们将详细讨论每种实现方法的优缺点,并提供相应的示例代码。让我们一起探索单例模式的精髓吧!

一、设计模式概念(了解)

设计模式是一种被广泛接受和应用的软件开发经验总结,它提供了解决常见问题的可重用方案。设计模式帮助开发人员以一种可靠、灵活和可维护的方式构建软件系统。

设计模式的概念最早由计算机科学家埃里希·伽玛Erich Gamma)等人在1994年的著作《设计模式:可复用面向对象软件的基础》中引入。该书提出了23种经典的设计模式,这些模式分为三大类:创建型模式、结构型模式和行为型模式。

每种设计模式都有其特定的应用场景和解决方案,开发人员可以根据具体需求选择适当的模式来解决问题。设计模式不仅提供了一种通用的解决方案,还促进了代码的可读性、可维护性和可扩展性。

然而,设计模式并非万能药,过度使用或错误使用设计模式可能导致代码变得复杂和难以理解。因此,在应用设计模式时,开发人员需要谨慎权衡,并结合实际情况做出决策。

总之,设计模式是一种帮助开发人员解决常见问题的工具,它提供了一套经过验证的解决方案。通过学习和应用设计模式,开发人员可以提高软件系统的质量和可维护性,从而更加高效地开发出优秀的软件。使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 设计模式使代码编写真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样

二、单例模式

一个类只能创建一个对象,即单例模式,该模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。比如在某个服务器程序中,该服务器的配置信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再通过这个单例对象获取这些配置信息,这种方式简化了在复杂环境下的配置管理。

⭕单例模式有两种实现模式:饿汉模式懒汉模式,下面我会一个一个的向大家介绍

1. 饿汉模式

(1)概念

饿汉模式是单例模式的一种实现方式,它在类加载时就创建唯一的实例对象,并通过静态方法提供全局访问点。简单来说就是不管你将来用不用,程序启动时就创建一个唯一的实例对象

🍪特点

  • 在类加载时就创建实例对象,因此可以保证实例的唯一性。
  • 通过静态方法提供全局访问点,方便其他代码获取该实例。
  • 线程安全,由于在类加载时创建实例,因此不需要考虑多线程并发访问的问题。

(2)模拟实现

// 饿汉模式:一开始(main函数之前)就创建对象
class Singleton
{
public:
    // 静态方法,返回唯一实例对象的地址
    static Singleton* GetInstance()
    {
        return _ins;
    }

    // 向字符串向量中添加元素,保证线程安全
    void Add(const string& str)
    {
        _mtx.lock();    // 获取互斥锁

        _v.push_back(str);  // 执行操作

        _mtx.unlock();  // 释放互斥锁
    }

    // 打印字符串向量中的所有元素,保证线程安全
    void Print()
    {
        _mtx.lock();    // 获取互斥锁

        for (auto& e : _v)
        {
            cout << e << endl;
        }
        cout << endl;

        _mtx.unlock();  // 释放互斥锁
    }

private:
    // 构造函数私有化,禁止外部创建对象
    Singleton()
    {}

    // 防拷贝构造和赋值运算符,保证实例的唯一性
    Singleton(const Singleton& s) = delete;
    Singleton& operator=(const Singleton& s) = delete;

private:
    mutex _mtx;         // 互斥锁,保证线程安全
    vector<string> _v;  // 字符串向量,存储数据

    static Singleton* _ins; // 唯一实例对象的地址
};

// 初始化静态成员变量
Singleton* Singleton::_ins = new Singleton();

以上代码实现了一个简单的使用饿汉模式实现的线程安全的单例类。它在类加载时就创建了唯一的实例对象,并提供了全局访问点,适用于需要在整个应用程序中共享一个实例对象的场景。同时,该类的实现还保证了多线程并发访问时的线程安全性,避免了数据竞争和死锁等问题。

(3)优缺点

  • 优点

    1. 实现简单直观,代码易于理解
    2. 线程安全,不需要额外的同步处理,适合在多线程环境中使用。
    3. 对象的创建是在类加载时完成的,可以避免线程安全问题和延迟加载的复杂性
  • 缺点

    1. 在程序运行期间始终存在实例对象,可能会造成资源浪费
    2. 如果该实例对象的创建过程耗时较长,会导致应用程序启动变慢
    3. 不支持延迟加载,无法根据实际需要来创建实例

(4)适用场景

  • 对象的创建过程简单且耗时较短的情况,适合使用饿汉模式。
  • 需要在整个应用程序中共享一个实例对象的情况,适合使用饿汉模式。
  • 在多线程环境下需要保证实例的唯一性和线程安全的情况,适合使用饿汉模式。

总的来说:饿汉模式是一种简单有效的单例模式实现方式,适合于对象创建耗时较短、且需要全局访问的情况。但在实际应用中,需要根据具体需求和性能要求选择适当的单例模式实现方式

2. 懒汉模式

(1)概念

懒汉模式是指在需要时才创建实例对象的单例模式在懒汉模式中,实例对象的创建被延迟到第一次使用时,而不是在程序启动时就立即创建。这样可以避免在程序启动时创建不必要的实例对象,节省系统资源

如果单例对象的构造过程耗时且资源占用较多,例如加载插件、初始化网络连接或读取文件等操作,同时在程序运行过程中可能并不经常使用该对象,那么在程序启动时立即进行初始化会导致启动速度缓慢。因此,在这种情况下,采用懒汉模式(延迟加载)是更好的选择

⭕懒汉模式允许在需要使用该对象时才创建实例,避免了不必要的资源浪费,提高了程序性能。通过懒汉模式,可以延迟加载单例对象,无需在程序启动时进行初始化,从而避免了启动时的缓慢问题。

(2)模拟实现

🚩思路一(双检查加锁,常规思路)
class Singleton
{
public:
    static Singleton* GetInstance()
    {
        // 双检查加锁,提高效率
        if (_ins == nullptr)  // 第一次检查
        {
            _imtx.lock();  // 加锁

            if (_ins == nullptr)  // 第二次检查,确保线程安全
            {
                _ins = new Singleton;  // 创建单例对象
            }

            _imtx.unlock();  // 解锁
        }

        return _ins;
    }

    // 显示释放单例对象
    static void DelInstance()
    {
        _imtx.lock();  // 加锁
        if (_ins)
        {
            delete _ins;  // 释放单例对象
            _ins = nullptr;  // 将指针置为空
        }
        _imtx.unlock();  // 解锁
    }

    // 内部类:用于单例对象的资源回收和持久化
    class GC
    {
    public:
        ~GC()
        {
            DelInstance();  // 调用DelInstance()函数进行资源回收和持久化
        }
    };

    // 内部静态成员变量,用于实现单例模式
    static Singleton* _ins;
    static mutex _imtx;  // 互斥锁,保证线程安全

    // 添加数据到vector中
    void Add(const string& str)
    {
        _vmtx.lock();  // 加锁

        _v.push_back(str);  // 添加数据到vector中

        _vmtx.unlock();  // 解锁
    }

    // 输出vector中的数据
    void Print()
    {
        _vmtx.lock();  // 加锁

        for (auto& e : _v)
        {
            cout << e << endl;  // 输出vector中的数据
        }
        cout << endl;

        _vmtx.unlock();  // 解锁
    }

    // 析构函数,用于实现单例对象的持久化
    ~Singleton()
    {
        // 比如要求程序结束时,将数据写到文件,单例对象析构时持久化就比较好
    }

private:
    // 私有构造函数,限制类外部创建对象
    Singleton()
    {}

    // 防拷贝
    Singleton(const Singleton& s) = delete;
    Singleton& operator=(const Singleton& s) = delete;

    mutex _vmtx;  // 互斥锁,保证线程安全
    vector<string> _v;  // 存储数据的vector

    static GC _gc;  // 内部类对象,用于单例对象析构时进行资源回收和持久化
};

// 初始化静态成员变量
Singleton* Singleton::_ins = nullptr;
mutex Singleton::_imtx;
Singleton::GC Singleton::_gc;

🚩思路二(使用静态局部变量的方式来实现单例模式)
class Singleton
{
public:
    // 获取单例对象的接口函数
    static Singleton* GetInstance()
    {
        // 使用静态局部变量实现单例模式,保证线程安全
        // C++11之前,这里不能保证初始化静态对象的线程安全问题
        // C++11之后,这里可以保证初始化静态对象的线程安全问题
        static Singleton inst;

        return &inst;
    }

    // 添加数据到vector中
    void Add(const string& str)
    {
        // 加锁,保证线程安全
        _vmtx.lock();

        // 添加数据到vector中
        _v.push_back(str);

        // 解锁,保证线程安全
        _vmtx.unlock();
    }

    // 输出vector中的数据
    void Print()
    {
        // 加锁,保证线程安全
        _vmtx.lock();

        // 遍历vector,输出其中的元素
        for (auto& e : _v)
        {
            cout << e << endl;
        }
        cout << endl;

        // 解锁,保证线程安全
        _vmtx.unlock();
    }

    // 析构函数,用于实现单例对象的持久化
    ~Singleton()
    {
        // 比如要求程序结束时,将数据写到文件,单例对象析构时持久化就比较好
    }

private:
    // 私有构造函数,限制类外部创建对象
    Singleton()
    {
        cout << "Singleton()" << endl;
    }

    // 防拷贝
    Singleton(const Singleton& s) = delete;
    Singleton& operator=(const Singleton& s) = delete;

private:
    mutex _vmtx;  // 互斥锁,保证线程安全
    vector<string> _v;  // 存储数据的vector
};

这段代码是使用静态局部变量的方式来实现单例模式。

🚨🚨注意:在 C++11 之前,使用静态局部变量的方式需要注意线程安全问题,因为静态局部变量的初始化只会在第一次调用时进行,如果有多个线程同时调用,可能会导致不同步的问题。但在 C++11 之后,静态局部变量的初始化是线程安全的,因此可以放心使用

(3)优缺点

  • 优点

    1. 延迟加载:懒汉模式在需要时才创建实例对象,避免了在程序启动时的资源浪费。这对于资源消耗较大的对象特别有用。
    2. 节省系统资源:由于实例对象的创建被延迟到需要时,懒汉模式可以节省系统资源,提高程序的性能。
    3. 线程安全:通过双重判断锁机制,懒汉模式可以在多线程环境下保证线程安全性。
  • 缺点

    1. 复杂性增加:相比饿汉模式,懒汉模式的实现相对复杂,需要考虑线程安全性问题。
    2. 性能损耗:在多线程环境下,由于需要进行双重判断锁机制,可能会导致一定的性能损耗。

(4)适用场景

  • 对象创建耗时较长或占用较多资源:懒汉模式可以避免在程序启动时创建不必要的实例对象,节省系统资源。
  • 需要延迟加载的场景:如果单例对象在程序运行的早期并不会被频繁使用,而只有在特定条件下才会被需要,那么懒汉模式是一个合适的选择。
  • 多线程环境下需要保证线程安全性:通过双重判断锁机制,懒汉模式可以在多线程环境下保证线程安全性,避免多个线程同时创建多个实例对象。

温馨提示

感谢您对博主文章的关注与支持!另外,我计划在未来的更新中持续探讨与本文相关的内容,会为您带来更多关于C++以及编程技术问题的深入解析、应用案例和趣味玩法等。请继续关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。期待与您建立更紧密的互动,共同探索C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/360910.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue使用富文本

1、安装 cnpm install vue-quill-editor2、在main.js中引入 // 富文本 import VueQuillEditor from vue-quill-editor // require styles 引入样式 import quill/dist/quill.core.css import quill/dist/quill.snow.css import quill/dist/quill.bubble.css Vue.use(VueQuill…

cesium-球体透明

在开发的过程&#xff0c;要求cesium加载的地球透明 只是地表透明还不能满足要求&#xff0c;只加载部分区域的方式来解决的 代码如下&#xff1a; <template><div id"cesiumContainer" style"height: 100vh;"></div><div id"…

【C++进阶08】哈希的应用(位图and布隆过滤器)

一、位图 1.1 位图的概念 面试题 给40亿个不重复的无符号整数&#xff0c;没排过序 给一个无符号整数&#xff0c;如何快速判断一个数是否在 这40亿个数中。【腾讯】 能想到的解决思路&#xff1a; 遍历&#xff0c;时间复杂度O(N)排序(O(NlogN)) 利用二分查找: logN放到哈…

centos搭建ftp踩坑记录

ftp服务器搭建参考b站视频 第1坑&#xff0c;开放端口后仍然无法连接&#xff1a; 这里不仅需要在防火墙打开20和21端口&#xff0c;还需要打开被动访问所使用的端口&#xff0c;也就是在配置文件vsftpd.conf中指定的被动访问接收端口。 pasv_enableYES pasv_min_port40000 p…

小红书论文刷新 SOTA:人体动作预测再升级,能精准到指尖

想象一下&#xff0c;你在玩一款 VR 游戏&#xff0c;准备伸手拿起一个虚拟杯子喝水。‍​​‌​‌​‎‎ 在传统的交互系统中&#xff0c;这通常需要你按下控制器上的特定按钮。但如果游戏集成了 EAI 框架&#xff0c;这一过程将变得无比自然。当你的手缓缓接近虚拟杯子时&…

数据库基础知识(一)

数据库基础知识&#xff08;一&#xff09; 一、数据库基本概念 1.1 数据 数据&#xff08;Data&#xff09;是指对客观事物进行描述并可以鉴别的符号&#xff0c;这 些符号是可识别的、抽象的。它不仅指狭义上的数字&#xff0c;而是有多 种表现形式&#xff1a;字母、文…

如何开通GitHub Copilot

GitHub Copilot 是由GitHub 和OpenAI共同开发的人工智能代码辅助工具&#xff0c;可以自动地生成高质量代码片段、上下文信息等。 通过自然语言处理和机器学习技术&#xff0c;能够通过分析程序员编写的代码、注释和上下文信息&#xff0c;自动生成代码&#xff0c;减轻程序员的…

在线摸头GIF生成系统源码

在线摸头GIF在线生成器html网页源码&#xff0c;可以点击选择文件按钮&#xff0c;或者直接将图片拖入&#xff0c;即可生成导出

Python爬虫---Scrapy框架---CrawlSpider

CrawlSpider 1. CrawlSpider继承自scrapy.Spider 2. CrawlSpider可以定义规则&#xff0c;再解析html内容的时候&#xff0c;可以根据链接规则提取出指定的链接&#xff0c;然后再向这些链接发送请求&#xff0c;所以&#xff0c;如果有需要跟进链接的需求&#xff0c;意思就是…

Code - VQ-VAE (Vector Quantised Variational AutoEncoder) 的实现源码

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/135936848 VQ-VAE&#xff0c;即Vector Quantized Variational AutoEncoder&#xff0c;向量量化变分自编码器。VQ-VAE 的创新之处是引入了一个向…

ArcGIS学习(二)属性表的基本操作

ArcGIS学习(二)属性表的基本操作 1.查看属性表 ArcGIS是处理空间数据的平台。对于空间数据,大家可以理解成它是由两个部分构成:1.一个是空间形体,也就是点、线、面三种。线又可以分为直线、曲线,面又分为圆形、正方形、不规则形体等;2.另外一个部分是空间形体所附带的…

Unix/Linux上的五种IO模型

a.阻塞 blocking 调用者调用了某个函数&#xff0c;等待这个函数返回&#xff0c;期间什么也不做&#xff0c;不停的去检查这个函数有没有返回&#xff0c;必须等这个函数返回才能进行下一步动作。 注意&#xff1a;阻塞并不是函数的行为&#xff0c;而是跟文件描述符有关。通…

离谱题 3236:练39.1 书香阁座位

3236正常写法 #include<bits/stdc.h> using namespace std; int main() {int sum,a,b;a1;b10;sumb;cout<<a<<" "<<b;cout<<" "<<sum<<endl;do{a;b2;sumx;cout<<a<<" "<<b<<&…

uniapp本地存储日志

uniapp本地存储日志 背景实现代码实现使用查看生成log读取 注意事项尾巴 背景 我们的APP开发完成之后&#xff0c;在我们测试环境或者自测的时候都好好的&#xff0c;但是发布到生产环境客户使用总会出现一些奇奇怪怪的问题。这时候因为没在开发环境&#xff0c;我们无法查看到…

力扣hot100 买卖股票的最佳时机 贪心 经典题

Problem: 121. 买卖股票的最佳时机 文章目录 思路复杂度Code 思路 假设今天卖出&#xff0c;那怎么样收益最大呢&#xff1f;之前买入价是最低的 复杂度 ⏰ 时间复杂度: &#xff1a; O ( n ) O(n) O(n) &#x1f30e; 空间复杂度: O ( 1 ) O(1) O(1) Code class Solut…

c++之IO流

1.C语言的输入与输出 C语言中我们用到的最频繁的输入输出方式就是scanf ()与printf()。 scanf(): 从标准输入设备(键 盘)读取数据&#xff0c;并将值存放在变量中。printf(): 将指定的文字/字符串输出到标准输出设备(屏幕)。 注意宽度输出和精度输出控制。C语言借助了相应的缓…

tsmc12: m0po max length问题(H384.M0_PO.L.1)

更多学习内容请关注「拾陆楼」知识星球 拾陆楼知识星球入口 在pt eco之后会有一些m0po max length问题出现,大部分问题都可以通过替换decap来解决,少部分由于局部density过高,需要手动调整。

2023强网杯复现

强网先锋 SpeedUp 要求2的27次方的阶乘的逐位之和 在A244060 - OEIS 然后我们将4495662081进行sha256加密 就得到了flag flag{bbdee5c548fddfc76617c562952a3a3b03d423985c095521a8661d248fad3797} MISC easyfuzz 通过尝试输入字符串判断该程序对输入字符的验证规则为9…

【C++】类和对象之构造函数、析构函数、拷贝构造函数(二)

前言&#xff1a;在上一篇我们对于C中类和对象有了一个初步的了解&#xff0c;今天我们将进一步的学习&#xff0c;今天我们目标是对构造函数、析构函数、拷贝构造函数进行一个初步学习在后面也会进一步的学习&#xff0c;一起加油呐&#xff01; &#x1f496; 博主CSDN主页:卫…

代码随想录 Leetcode669. 修剪二叉搜索树

题目&#xff1a; 代码(首刷看解析 2024年1月31日&#xff09;&#xff1a; class Solution { public:TreeNode* trimBST(TreeNode* root, int low, int high) {if (!root) return root;if (root->val < low) {TreeNode* node trimBST(root->right,low,high);return…
最新文章