计算机设计大赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习

文章目录

  • 0 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 垃圾邮件(短信)分类算法实现 机器学习 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):
    string = re.sub(r"[^\u4e00-\u9fff]", " ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip()

def get_data_in_a_file(original_path, save_path='all_email.txt'):
    files = os.listdir(original_path)
    for file in files:
        if os.path.isdir(original_path + '/' + file):
                get_data_in_a_file(original_path + '/' + file, save_path=save_path)
        else:
            email = ''
            # 注意要用 'ignore',不然会报错
            f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')
            # lines = f.readlines()
            for line in f:
                line = clean_str(line)
                email += line
            f.close()
            """
            发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多
            """
            f = open(save_path, 'a', encoding='utf8')
            email = [word for word in jieba.cut(email) if word.strip() != '']
            f.write(' '.join(email) + '\n')

print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):
    f = open(original_path, 'r')
    label_list = []
    for line in f:
        # spam
        if line[0] == 's':
            label_list.append('0')
        # ham
        elif line[0] == 'h':
            label_list.append('1')

    f = open(save_path, 'w', encoding='utf8')
    f.write('\n'.join(label_list))
    f.close()

print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer

def tokenizer_jieba(line):
    # 结巴分词
    return [li for li in jieba.cut(line) if li.strip() != '']

def tokenizer_space(line):
    # 按空格分词
    return [li for li in line.split() if li.strip() != '']

def get_data_tf_idf(email_file_name):
    # 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_space
    vectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')
    content = open(email_file_name, 'r', encoding='utf8').readlines()
    x = vectoring.fit_transform(content)
    return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as np

if __name__ == "__main__":
    np.random.seed(1)
    email_file_name = 'all_email.txt'
    label_file_name = 'label.txt'
    x, vectoring = get_data_tf_idf(email_file_name)
    y = get_label_list(label_file_name)

    # print('x.shape : ', x.shape)
    # print('y.shape : ', y.shape)
    
    # 随机打乱所有样本
    index = np.arange(len(y))  
    np.random.shuffle(index)
    x = x[index]
    y = y[index]

    # 划分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

    clf = svm.LinearSVC()
    # clf = LogisticRegression()
    # clf = ensemble.RandomForestClassifier()
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))
    print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。



    def get_embedding_vectors(tokenizer, dim=100):
    embedding_index = {}
    with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
    for line in tqdm.tqdm(f, "Reading GloVe"):
    values = line.split()
    word = values[0]
    vectors = np.asarray(values[1:], dtype='float32')
    embedding_index[word] = vectors
    
    word_index = tokenizer.word_index
    embedding_matrix = np.zeros((len(word_index)+1, dim))
    for word, i in word_index.items():
    embedding_vector = embedding_index.get(word)
    if embedding_vector is not None:
    # words not found will be 0s
    embedding_matrix[i] = embedding_vector
    
    return embedding_matrix


    def get_model(tokenizer, lstm_units):
    """
    Constructs the model,
    Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation
    """
    # get the GloVe embedding vectors
    embedding_matrix = get_embedding_vectors(tokenizer)
    model = Sequential()
    model.add(Embedding(len(tokenizer.word_index)+1,
    EMBEDDING_SIZE,
    weights=[embedding_matrix],
    trainable=False,
    input_length=SEQUENCE_LENGTH))
    
    model.add(LSTM(lstm_units, recurrent_dropout=0.2))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation="softmax"))
    # compile as rmsprop optimizer
    # aswell as with recall metric
    model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
    metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])
    model.summary()
    return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758

Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/360957.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣349两个数的交集

题目连接:349. 两个数组的交集 - 力扣(LeetCode) 给定两个数组 nums1 和 nums2 ,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。 示例 1: 输入: nums1 [1,2,2…

elementUI之el-form-item的嵌套的场景

像这种,计费规则这几个字而且带红点,外观上是el-form-item,但是其并没有直接和控件进行相关联,这是和其他的el-form-item不同之处。所以这里就得用上嵌套了。也就是说elementUI中el-form-item是可以嵌套使用的。

幻兽帕鲁(Palworld)v0.1.3免安装中文版(下载及配置中文及服务器搭建)

配置中文 进入到游戏文件夹中 Palworld.v0.1.3.0\game\Engine\Binaries\ThirdParty\Steamworks\Steamv153\Win64\steam_settings设置中文 simplified chinesewindows搭建服务器 要求 中央处理器4核(推荐)内存16千兆字节(GB) …

深入玩转Playwright:高级操作解析与实践

playwright高级操作 iframe切换 ​ 很多时候,网页可能是网页嵌套网页,就是存在不止一个html标签,这时候我们的selenium或者playwright一般来说定位不到,为什么呢? ​ 因为默认是定位到第一个标准的html标签内部。 …

Python算法题集_滑动窗口最大值

本文为Python算法题集之一的代码示例 题目239:滑动窗口最大值 说明:给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗…

蓝桥杯 第 2 场 小白入门赛

目录 1.蓝桥小课堂-平方和 2.房顶漏水啦 3.质数王国 4.取余 5.数学尖子生 6.魔术师 比赛链接 1.蓝桥小课堂-平方和 简单签到直接按照题目处理即可注意开long long void solve(){LL x; cin>>x;LL ans x*(x1)*(2*x1)/6;cout<<ans<<endl; } 2.房顶漏水…

opencv-python计算视频光流

光流基本概念 光流表示的是相邻两帧图像中每个像素的运动速度和运动方向。具体&#xff1a;光流是空间运动物体在观察成像平面上的像素运动的瞬时速度&#xff0c;是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系&#xf…

仰暮计划|“那时候在生产队下面,集体干活,吃大锅饭,由队里分粮食,吃不饱饭是常事,队里分的粮食就那么点,想要吃饱真的太难了”

希望未来的中国越来越好&#xff0c;大家的生活也越来越好 老人是1955年在河南省洛阳市洛宁县的一个小山村里出生的&#xff0c;前半辈子为了生活&#xff0c;为了孩子而打拼&#xff0c;虽然经历了不少的苦难&#xff0c;但后半辈子也算是苦尽甘来&#xff0c;生活美满。现在就…

【MATLAB源码-第130期】基于matlab的BPSK-ZF迫零均衡,对比均衡前后的误码率曲线以及理论曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 信道均衡是通信系统中的一项关键技术&#xff0c;其主要目的是减少或消除由于信道特性导致的信号失真。在数字通信中&#xff0c;尤其是在无线通信系统中&#xff0c;由于多径传播等原因&#xff0c;接收到的信号会受到严重的…

浅析云性能监控的重要性及核心功能

随着企业日益依赖云计算服务&#xff0c;云性能监控变得至关重要。云性能监控是一种实时监测、分析和报告云基础设施及应用程序性能的方法。本文将深入探讨云性能监控的目的、重要性以及其核心功能&#xff0c;以帮助企业更好地理解和实施这一关键的运维实践。 一、云性能监控的…

[设计模式Java实现附plantuml源码~结构型]不兼容结构的协调——适配器模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

PCB设计10条重要布线原则(学习笔记)

文章目录 一、连线精简二、避免走直角线三、差分走线四、蛇形走线五、圆滑走线六、数字与模拟分开七、3W原则八、20H原则九、铜箔承载电流十、过孔承载电流 一、连线精简 尽量用最短的路径去布线 1、可以省资源 2、信号差损少 3、线能不拐弯就不拐弯 4、能不换层就不换层 二…

MongoDB安装以及卸载,通过Navicat 15 for MongoDB连接MongoDB

查询id&#xff1a; docker ps [rootlocalhost ~]# docker stop c7a8c4ac9346 c7a8c4ac9346 [rootlocalhost ~]# docker rm c7a8c4ac9346 c7a8c4ac9346 [rootlocalhost ~]# docker rmi mongo sudo docker pull mongo:4.4 sudo docker images 卸载旧的 sudo docker stop mong…

Django4.2(DRF)+Vue3 读写分离项目部署上线

文章目录 1 前端2 后端2.1 修改 settings.py 文件关于静态文件2.2 关于用户上传的文件图片 3 Nginx4 镜像制作4.1 nginx4.3 Django镜像4.3.1 构建 5 docker-compose 文件内容 1 前端 进入前端项目的根目录&#xff0c;运行如下命令进行构建 npm run build构建完成后&#xff…

Apple Vision Pro 评测:这款顶尖头显仅是对未来的初步探索

原文&#xff1a;Apple Vision Pro Review: The Best Headset Yet Is Just a Glimpse of the Future 作者&#xff1a;Joanna Stern 戴上 Apple Vision Pro 混合现实头显整整近 24 小时后&#xff0c;有几件事让我颇感意外&#xff1a; 我居然没感到恶心。我竟然高效完成了大…

云纱网签约百望云,联手打造数字化产业闭环

近日&#xff0c;百望云签约广东云纱数字科技有限公司&#xff0c;共建数字化发票管理系统&#xff0c;赋能产业链上下游供应商的协同交易与运营&#xff0c;助力企业实现数字化四流合一交易&#xff0c;打造数字化产业闭环。 云纱网是广东云纱数字科技有限公司依托于深厚的产业…

利用牛顿方法求解非线性方程(MatLab)

一、算法原理 1. 牛顿方法的算法原理 牛顿方法&#xff08;Newton’s Method&#xff09;&#xff0c;也称为牛顿-拉弗森方法&#xff0c;是一种用于数值求解非线性方程的迭代方法。其基本思想是通过不断迭代来逼近方程的根&#xff0c;具体原理如下&#xff1a; 输入&#…

STM32——DMA

STM32——DMA 1.DMA介绍 什么是DMA&#xff1f; DMA(Direct Memory Access&#xff0c;直接存储器访问) 提供在外设与内存、存储器和存储器、外设与外设之间的高速数据传输使用。它允许不同速度的硬件装置来沟通&#xff0c;而不需要依赖于CPU&#xff0c;在这个时间中&…

移动端设计规范 - 文字使用规范

这是一篇关于移动端产品界面设计时&#xff0c;文字大小的使用规范&#xff0c;前端人员如果能了解一点的话&#xff0c;在实际开发中和设计沟通时&#xff0c;节省沟通成本&#xff0c;也能提高设计落地开发时的还原度。 关于 在做移动端产品设计时&#xff0c;有时候使用文字…

fpmarkets实例讲解止损,控制风险如此简单

止损和止盈是交易者在交易时都需要了解的两个基本设置&#xff0c;在上篇文章fpmarkets澳福和各位投资者分享 了止盈如何工作&#xff0c;今天我们继续实例讲解止损&#xff0c;在交易中控制不必要的风险。 止损单是基本交易订单之一。如果市场走向与预期相反&#xff0c;它会限…
最新文章