基于YOLOv8算法的照片角度分类项目实践

目录

  • 一、任务概述
  • 二、YOLOv8算法简介
    • 2.1 算法改进
    • 2.2 算法特点
    • 2.3 网络结构
    • 2.4 性能比较
  • 三、工程实践
    • 3.1 安装算法框架库ultralytics
    • 3.2 库存照片预处理
      • 3.2.1 提取所有图片
      • 3.2.2 去除冗余的相同照片
      • 3.2.3 去除无车辆照片
      • 3.2.4 随机提取指定数量的图片
    • 3.3 照片朝向分类
      • 3.3.1 数据准备
      • 3.3.2 训练和评估
      • 3.3.3 预测

一、任务概述

最近一个项目,需要针对库存的车辆照片运用人工智能算法进行照片朝向分类和矫正,算法在设计时需要满足轻量化需求,适合在CPU环境中进行快速推理。在具体实现时,可以将照片分为4个类别:ni_0、ni_90、ni_180、ni_270,分别表示照片经过0度、90度、180度、270度逆向旋转。综和考虑算法精度和速度要求,本文拟采用YOLOv8算法来实现该任务。

YOLOv8 是当前业界领先的感知模型,它建立在以前 YOLO 版本的基础上,引入了新的功能并做了相关改进,提升了性能和灵活性。具体创新包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。

二、YOLOv8算法简介

  • YOLOv8作者:glenn-jocher
  • 项目链接:https://github.com/ultralytics/ultralytics

YOLO 是一种基于图像全局信息进行预测的目标检测系统。自 2015 年 Joseph Redmon、Ali Farhadi 等人提出初代模型以来,领域内的研究者们已经对 YOLO 进行了多次更新迭代,模型性能越来越强大。当前最新版本为YOLOv8。

具体的,YOLOv8 是由小型初创公司 Ultralytics 创建并维护的,值得注意的是 YOLOv5 也是由该公司创建的。

2.1 算法改进

YOLOv8 算法的核心特性和改动可以归纳如下:

  • 基本特性:提供了一个全新的 SOTA 模型,包括P5 640P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。
  • 骨干网络和 Neck 网络:参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,这种精心微调方式大幅提升了模型性能。不过这个C2f 模块中存在 Split 等操作,对特定硬件部署没有之前那么友好了。
  • Head网络:相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从 Anchor-Based 换成了 Anchor-Free。
  • Loss损失函数:采用了 TaskAlignedAssigner 正样本分配策略,并引入了 Distribution Focal Loss。

从上面可以看出,YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践。

2.2 算法特点

  • 对用户友好的 API(命令行 + Python);
  • 模型更快更准确;
  • 模型能完成常见的图像感知任务,包括图像分类、目标检测、实例分割、关键点检测和视频跟踪;
  • 与先前所有版本的 YOLO 兼容可扩展;

2.3 网络结构

在这里插入图片描述
上图所示即为YOLOv8的完整模型结构图。

查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型。

Head 部分变化最大,从原先的耦合头变成了解耦头,其结构如下所示:
在这里插入图片描述
可以看出,不再有之前的 objectness 分支,只有解耦的分类和回归分支,并且其回归分支使用了 Distribution Focal Loss 中提出的积分形式表示法。

2.4 性能比较

在这里插入图片描述
YOLOv8是由小型初创公司 Ultralytics 创建并维护的,不过 Ultralytics 并没有直接将开源库命名为 YOLOv8,而是直接使用 Ultralytics 这个词,原因是 Ultralytics 将这个库定位为算法框架,而非某一个特定算法。

Ultralytics 开源库的两个主要优点是:

  • 融合众多当前 SOTA 技术于一体;
  • 未来将支持其他 YOLO 系列以及 YOLO 之外的更多算法;

三、工程实践

下面开始针对实际工程任务进行操作。

3.1 安装算法框架库ultralytics

YOLOv8算法位于开源框架库ultralytics中,因此先要安装ultralytics。
安装方式如下:

 pip install ultralytics

为了方便后续配置和使用,可以将github上的ultralytics源码拉取到本地:

git clone https://github.com/ultralytics/ultralytics.git@main

3.2 库存照片预处理

3.2.1 提取所有图片

假设库存照片位于名为“第一批原始照片”的文件夹中,由于库存照片目录结构混乱,图像格式不统一,因此需要将所有图片提取到一个统一的文件夹中,并且所有图片以jpg格式保存,这样方便后续使用。

在同目录下创建文件夹car_data/1,然后使用下面的脚本完成图片提取和转换。

import os
import cv2
import numpy as np


def getFileList(dir, Filelist, ext=None):
    """
    获取文件夹及其子文件夹中文件列表
    输入 dir:文件夹根目录
    输入 ext:扩展名
    返回: 文件路径列表
    """
    newDir = dir
    if os.path.isfile(dir):
        if ext is None:
            Filelist.append(dir)
        else:
            if ext in dir[-3:]:
                Filelist.append(dir)

    elif os.path.isdir(dir):
        for s in os.listdir(dir):
            newDir = os.path.join(dir, s)
            getFileList(newDir, Filelist, ext)

    return Filelist


org_img_folder = "./第一批原始照片"

# 检索文件
imglist = getFileList(org_img_folder, [], "jpg")
print("本次执行检索到 " + str(len(imglist)) + " 张图像\n")

imgIndex = 1
for imgpath in imglist:
    print(imgpath)
    try:
        img = cv2.imdecode(np.fromfile(imgpath, dtype=np.uint8), -1)
        if img is None:
            print('读取失败')
            continue
        if len(img.shape) == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif img.shape[2] == 1:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif img.shape[2] == 4:
            img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
        savepath = os.path.join("car_data/1", 'jianyan_' + str(imgIndex) + ".jpg")
        cv2.imwrite(savepath, img)
        imgIndex += 1
    except:
        print("异常")
    else:
        pass

print("完成")

上述脚本用来提取库存中的jpg照片,如果库存中还存在png或bmp图片,那么就修改代码:

imglist = getFileList(org_img_folder, [], "jpg")

将其中的jpg修改为png或bmp,同时修改对应的imgIndex起始标签值。

所有图片提取完以后都存放在car_data/1文件夹中,以jpg格式存储。库存总图片数达到89786张。

3.2.2 去除冗余的相同照片

库存照片中可能存在相同照片多次存放的问题,因此需要将完全相同的图像剔除掉,减少冗余。本文使用哈希比对算法来实现,具体脚本代码如下:

import os
import cv2
import shutil
from PIL import Image
import imagehash

srcFolder = 'car_data/1'
dstFolder = 'delimgs'
imgnames = os.listdir(srcFolder) 

# 计算所有图像哈希值
hashlst = []
for imgname in imgnames:
    print('计算哈希值中  '+imgname)
    hash_size = 16
    imgpath = os.path.join(srcFolder,imgname)
    hash = imagehash.dhash(Image.open(imgpath),hash_size=hash_size)
    hashlst.append(hash)

# 检索相似图片
for curIndex in range(len(imgnames)-1):
    hash1 = hashlst[curIndex]
    print('比对中  '+imgnames[curIndex])
    for compIndex in range(curIndex+1,len(imgnames)):
        hash2 =  hashlst[compIndex]
        if hash1==hash2:
            imgname = imgnames[curIndex]
            dstpath = os.path.join(dstFolder, imgname)
            shutil.move(os.path.join(srcFolder,imgnames[curIndex]), dstpath)
            imgname = imgname.split('.')[0]
            dstpath = os.path.join(dstFolder, imgname+'_compare.jpg')
            shutil.copyfile(os.path.join(srcFolder,imgnames[compIndex]), dstpath)
            print('找到相同文件')
            break
print('完成')

去除冗余后的库存总图片数达到74125张。

3.2.3 去除无车辆照片

库存照片中存在大量无车辆的错误照片,因此需要写一个脚本将无车辆照片剔除掉。这里使用预先在coco数据集上训练好的yolov8算法来实现。具体脚本代码如下:

import cv2, os, shutil
from ultralytics import YOLO

# 检索文件夹
folderpath = "./car_data/1"
dstFolder = './delimgs'
imgnames = os.listdir(folderpath)

# 加载模型
model = YOLO("models/yolov8m-seg.pt")

# 循环处理
for imgname in imgnames:
    # 读取图像
    imgpath = os.path.join(folderpath, imgname)
    print(imgpath)
    img = cv2.imread(imgpath)
    if img is None:
        os.remove(imgpath)
        continue

    # 车辆检索
    result = model(img, imgsz=640, conf=0.5)[0]
    boxes = result.boxes
    isfind = False
    for box in boxes:
        classlabel = box.cls.cpu().numpy()[0]
        if classlabel == 1 or classlabel == 2 or classlabel == 3 or classlabel == 5 or classlabel == 7:
            isfind = True
            break
        
    # 没找到车辆,删除图像
    if not isfind:
        dstpath = os.path.join(dstFolder, imgname)
        shutil.move(imgpath, dstpath)

print('完成')

在delimgs文件夹中存放着剔除掉的图像,由于算法存在一定的漏检率,因此有些存在车辆的照片被错误的移动到这个delimgs文件夹中,需要人工复核,将这些照片“捞回去”。

去除无车辆照片后,库存总图片数达到51180张。

3.2.4 随机提取指定数量的图片

库存照片数据量庞大,本文只需要提取2万多张图片用来训练算法即可。

import os
import shutil,random

srcFolder =  'car_data/1'
dstFolder = 'car_data/2'

if not os.path.exists(dstFolder):
    os.makedirs(dstFolder)

picIndex = 1
imgnames = os.listdir(srcFolder)
random.shuffle(imgnames)
for imgname in imgnames:
    if picIndex > 25000:
        continue
    imgpath = os.path.join(srcFolder, imgname)
    dstpath = os.path.join(dstFolder, imgname)
    shutil.move(imgpath, dstpath)
    picIndex += 1

print('完成')  

提取好的图片位于car_data/2文件夹中,总数25000张。

3.3 照片朝向分类

3.3.1 数据准备

首先从预处理后的库存照片中精心挑选照片朝向正确的图像共计2万张整,然后分别对这2万张图像进行旋转,得到对应的逆90、逆180、逆270度角的三个类别图像,这样就组成了可以用来分类的图像库photo_direction,共计8万张图像,分4个类别。

完整生成脚本如下:

import os
from PIL import Image

ni0_folder = "./dataset/car_data/ni0"
ni90_folder = "./dataset/car_data/ni90"
ni180_folder = "./dataset/car_data/ni180"
ni270_folder = "./dataset/car_data/ni270"

# 创建文件夹
if not os.path.exists(ni90_folder):
    os.makedirs(ni90_folder)
if not os.path.exists(ni180_folder):
    os.makedirs(ni180_folder)
if not os.path.exists(ni270_folder):
    os.makedirs(ni270_folder)

# 检索图像
img_names = os.listdir(ni0_folder)
for img_name in img_names:
    img_path = os.path.join(ni0_folder, img_name)
    print(img_path)
    # 读取图像
    img = Image.open(img_path)
    # 逆时针旋转90
    img90 = img.transpose(Image.ROTATE_90)
    save_path = os.path.join(ni90_folder, img_name)
    img90.save(save_path)
    # 逆时针旋转180
    img180 = img.transpose(Image.ROTATE_180)
    save_path = os.path.join(ni180_folder, img_name)
    img180.save(save_path)
    # 逆时针旋转270
    img270 = img.transpose(Image.ROTATE_270)
    save_path = os.path.join(ni270_folder, img_name)
    img270.save(save_path)

print("完成")

其中ni0、ni90、ni180、ni270分别存储了逆时针0°、90°、180°、270°对应的图像。最后从每个文件夹中随机抽取2000张图片作为测试集用来评估算法。

最终数据集目录结构整理如下:

dataset/car_data/
|
|-- train/
|   |-- ni0/
|   |   |-- 10008.jpg
|   |   |-- 10009.jpg
|   |   |-- ...
|   |
|   |-- ni90/
|   |   |-- 1000.jpg
|   |   |-- 1001.jpg
|   |   |-- ...
|   |
|   |-- ni180/
|   |   |-- 10014.jpg
|   |   |-- 10015.jpg
|   |   |-- ...
|   |
|   |-- ni270/
|   |   |-- 10014.jpg
|   |   |-- 10015.jpg
|   |   |-- ...
|   |
|
|-- test/
|   |-- ni0/
|   |   |-- 10.jpg
|   |   |-- 11.jpg
|   |   |-- ...
|   |
|   |-- ni90/
|   |   |-- 12.jpg
|   |   |-- 13.jpg
|   |   |-- ...
|   |
|   |-- ni180/
|   |   |-- 14.jpg
|   |   |-- 15.jpg
|   |   |-- ...
|   |
|   |-- ni270/
|   |   |-- 16.jpg
|   |   |-- 17.jpg
|   |   |-- ...

上述结构就是ultralytics的图像分类所需要的目录结构,整个数据集分为train和test两个文件夹,其中每个种类的图片都放在一起,每个种类的文件夹名称即为对应的类别名称。

3.3.2 训练和评估

找到ultralytics/cfg/models/v8中找到yolov8-cls.yaml文件,拷贝一份到ultralytics/configs目录下面,并重命名为yolov8-cls-photodirection.yaml,修改该文件中的nc参数为4,表示共有4个类别。

训练代码如下:

from ultralytics import YOLO

# 加载预训练模型和配置文件
model = YOLO('./configs/yolov8m-cls-photodirection.yaml').load('yolov8m-cls.pt')

# 训练模型
results = model.train(data='./dataset/car_data', epochs=100, imgsz=64, batch=32, device='0,1')

启动训练后如果本地没有预训练模型yolov8-cls.pt,则ultralytics框架会自动从github上进行下载。需要注意的是创建的yaml名称为yolov8-cls-photodirection.yaml,而在代码中调用的是yolov8s-cls-photodirection.yaml,这是ultralytics框架提供的一个功能,我们只需要配置一份yaml文件,即可适配不同规模任务的分类模型,包括:

  • YOLOv8n-cls
  • YOLOv8s-cls
  • YOLOv8m-cls
  • YOLOv8l-cls
  • YOLOv8x-cls

本文共使用7万多张照片在2个GPU上进行训练,测试集为2000张图片,总耗时约17个小时。在测试集上的最佳top1准确率为0.985。

3.3.3 预测

训练好模型以后,使用下面的代码可以对单张图片进行预测和矫正:

from ultralytics import YOLO
import cv2
from PIL import Image
import numpy as np

# 加载模型
model = YOLO('./runs/classify/train/weights/best.pt')

# 预测模型
img = cv2.imread('./imgs/7.jpg')
results = model(img)
label = int(results[0].probs.top1) # 标签类别
labelconf = results[0].probs.top1conf.cpu().numpy() # 置信度
print(label)
print(labelconf)

# 矫正
Thr = 0.8
if labelconf > Thr:
    if label == 1: # 逆时针180度
        img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
        img = img.transpose(Image.ROTATE_180)
        img = cv2.cvtColor(np.asarray(img),cv2.COLOR_RGB2BGR)
        save_path = './imgs/result.jpg'
        cv2.imwrite(save_path,img)
    elif label == 2: # 逆时针270度
        img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
        img = img.transpose(Image.ROTATE_90)
        img = cv2.cvtColor(np.asarray(img),cv2.COLOR_RGB2BGR)
        save_path = './imgs/result.jpg'
        cv2.imwrite(save_path,img)
    elif label == 3: # 逆时针90度
        img = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))
        img = img.transpose(Image.ROTATE_270)
        img = cv2.cvtColor(np.asarray(img),cv2.COLOR_RGB2BGR)
        save_path = './imgs/result.jpg'
        cv2.imwrite(save_path,img)

最终输出的是分类标签、置信度以及矫正过后的车辆照片。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/369447.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue3中插槽选择器和全局选择器

Vue3中插槽选择器和全局选择器 插槽选择器全局选择器1. 再增加style2. 使用:global 插槽选择器 使用场景: 要在定义插槽时定义样式 定义插槽 <template><div>插槽<slot></slot></div> </template><script setup langts></scri…

Linux——权限管理

1、ACL权限 在普通权限中&#xff0c;用户对文件只有三种身份&#xff0c;就是属主、属组和其他人&#xff1b;每种用户身份拥有读&#xff08;read&#xff09;、写&#xff08;write&#xff09;和执行&#xff08;execute&#xff09;三种权限。但是在实际工作中&#xff0…

两个重要极限【高数笔记】

【第一个&#xff1a;lim &#xff08;sinx / x&#xff09; 1, x -- > 0】 1.本质&#xff1a; lim &#xff08;sin‘&#xff1f;’ / ‘&#xff1f;’&#xff09; 1, ‘&#xff1f;’ -- > 0&#xff1b;保证‘&#xff1f;’ -- > 0,与趋向无关 2.例题&#x…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之MenuItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、MenuItem组件 TextClock组件通过文本将当前系统时间显示在设备上。支持不同时…

单臂路由实验(华为)

思科设备参考&#xff1a; 单臂路由实验&#xff08;思科&#xff09; 一&#xff0c;实验目的 在路由器的一个接口上通过配置子接口的方式&#xff0c;实现相互隔离的不同vlan之间互通。 ​ 二&#xff0c;设备配置 Switch1 <Huawei>sys [Huawei]vlan batch 10 20…

定时器 Timer(超详细模拟实现)

目录 一、定时器 1.定时器概述 2.Java标准库提供的定时器类 3.定时器代码样例 二、实现 1.实现思路 2.代码实现 2.1纯享版 2.2注释版 3.代码解析(超详细) 3.1描述类MyTimerTask ①构造&#xff1a;MyTimerTask&#xff08;Runnable runnable, long delay&#xff…

[Angular 基础] - Angular 渲染过程 组件的创建

[Angular 基础] - Angular 渲染过程 & 组件的创建 之前的笔记为了推进度写的太笼统了&#xff08;只有功能没有其他&#xff09;&#xff0c;当时学的时候知道是什么东西&#xff0c;但是学完后重新复习发现有些内容就记不清了&#xff0c;所以重新用自己的语言总结一下 …

Linux 多线程 | 线程的互斥

在前面的文章中我们讲述了多线程的一些基本的概念以及相关的操作&#xff0c;那么在本章中我们就将继续讲述与多线程相关的同步与互斥之间的问题。 首先我们使用一个例子引出我们的问题&#xff0c;又一个全局的变量g_val 100&#xff0c;这个变量是被所有的执行流所共享的&a…

MySQL进阶45讲【10】MySQL为什么有时候会选错索引?

1 前言 前面我们介绍过索引&#xff0c;在MySQL中一张表其实是可以支持多个索引的。但是&#xff0c;写SQL语句的时候&#xff0c;并没有主动指定使用哪个索引。也就是说&#xff0c;使用哪个索引是由MySQL来确定的。 大家有没有碰到过这种情况&#xff0c;一条本来可以执行得…

VSCode snippets 自定义Vue3代码片段(持续更新)

在编写Vue代码时发现VSCode中的各类snippets插件无法提供一些常用的代码片段,为避免重复造轮子,提高编码效率,特意自己定义了一些代码片段。为方便初学者,提供了自定义代码片断的方法。 一、 自定义代码片断的方法 1.打开命令面板(Ctrl+Shift+P) 2. 输入 user Snippets…

Hadoop3.x基础(3)- Yarn

来源&#xff1a;B站尚硅谷 目录 Yarn资源调度器Yarn基础架构Yarn工作机制作业提交全过程Yarn调度器和调度算法先进先出调度器&#xff08;FIFO&#xff09;容量调度器&#xff08;Capacity Scheduler&#xff09;公平调度器&#xff08;Fair Scheduler&#xff09; Yarn常用命…

C语言-2

自定义类型 基本认识 /*引入&#xff1a;学生&#xff1a;姓名&#xff0c;学号&#xff0c;年龄&#xff0c;成绩请为学生们专门定制一个类型&#xff08;创造一个类型&#xff09;结构体格式&#xff1a;struct 标识符 // 标识符即自定义类型的名称{成员; // 自己设置…

【Unity知识点详解】自定义程序集

今天来介绍一下Unity中的自定义程序集。在项目开发中我们经常接触到第三方插件的程序集&#xff0c;如DOTween、Newtonsoft.Json等。 使用自定义程序集有这么几个好处&#xff1a; 方便代码的的复用。当某一功能模块需要在多个项目中重复使用时&#xff0c;可以将代码编译成程…

新书速览|Kubernetes从入门到DevOps企业应用实战

从0到1&#xff0c;从零开始全面精通Kubernetes&#xff0c;助力企业DevOps应用实践 本书内容 《Kubernetes从入门到DevOps企业应用实战》以实战为主&#xff0c;内容涵盖容器技术、Kubernetes核心资源以及基于Kubernetes的企业级实践。从容器基础知识开始&#xff0c;由浅入深…

C#中使用OpenCvSharp4绘制直线、矩形、圆、文本

C#中使用OpenCvSharp4绘制直线、矩形、圆、文本 继之前的Python中使用Opencv-python库绘制直线、矩形、圆、文本和VC中使用OpenCV绘制直线、矩形、圆和文字&#xff0c;将之前的Python和C示例代码翻译成C#语言&#xff0c;很简单&#xff0c;还是借用OpenCvSharp4库中的Line、…

基于腾讯云服务器搭建幻兽帕鲁服务器保姆级教程

随着网络游戏的普及&#xff0c;越来越多的玩家希望能够拥有自己的游戏服务器&#xff0c;以便能够自由地玩耍。而腾讯云服务器作为一个优秀的云计算平台&#xff0c;为玩家们提供了一个便捷、稳定、安全的游戏服务器解决方案。本文将为大家介绍如何基于腾讯云服务器搭建幻兽帕…

Fink CDC数据同步(三)Flink集成Hive

1 目的 持久化元数据 Flink利用Hive的MetaStore作为持久化的Catalog&#xff0c;我们可通过HiveCatalog将不同会话中的 Flink元数据存储到Hive Metastore 中。 利用 Flink 来读写 Hive 的表 Flink打通了与Hive的集成&#xff0c;如同使用SparkSQL或者Impala操作Hive中的数据…

从MySQL到TiDB:兼容性全解析

MySQL 在高并发和大数据量场景下&#xff0c;单个实例的扩展性有限。而 TiDB 作为一款分布式NewSQL数据库&#xff0c;设计之初就支持水平扩展&#xff08;Scale-Out&#xff09;&#xff0c;通过增加节点来线性提升处理能力和存储容量&#xff0c;能够很好地应对大规模数据和高…

AS-V1000 视频监控平台产品介绍:客户端功能介绍(一)

目 录 一、引言 1.1 AS-V1000视频监控平台介绍 1.2平台服务器配置说明 二、软件概述 2.1 客户端软件用途 2.2 客户端功能 三、客户端功能说明 3.1 登陆和主界面 3.1.1登陆界面 3.1.2登陆操作 3.1.3主界面 3.1.4资源树 3.2 视频预览 3.2.1视频预览界面 3.2.…

python 基础知识点(蓝桥杯python科目个人复习计划33)

今日复习内容&#xff1a;以做题为主 例题1&#xff1a;小蓝的漆房 题目描述&#xff1a; 小蓝是一位有名的漆匠&#xff0c;他的朋友小桥有一个漆房&#xff0c;里面有一条长长的走廊&#xff0c;走廊两旁有许多相邻的房子&#xff0c;每间房子最初被涂上了一种颜色。 小桥…
最新文章