【紧耦合新范式】Think-on-Graph:解决大模型在医疗、法律、金融等垂直领域的幻觉

Think-on-Graph:解决大模型在医疗、法律、金融等垂直领域的幻觉

    • Think-on-Graph 原理
      • ToG 算法步骤:想想再查,查查再想
      • 实验结果

 


论文:https://arxiv.org/abs/2307.07697

代码:https://github.com/IDEA-FinAI/ToG

 

Think-on-Graph 原理

幻觉是什么:大模型的「幻觉」问题。

  • 多跳推理路径的探索算法,提高深度推理能力:ToG 通过在知识图谱中动态探索多个推理路径,并利用 beam search 算法挑选最有前景的路径,从而增强了LLMs的深度推理能力。

  • 显式、可编辑的推理路径,增强推理的责任感和可追溯性:通过提供明确的推理路径,ToG不仅增加了推理过程的可解释性,而且允许对模型输出的来源进行追踪和校正,从而提高了推理的责任感和可靠性。

  • 插件式框架,提高大模型的灵活性和效率:通过知识图谱而非LLMs更新知识,可以提高知识的更新频率,降低更新成本,同时增强小型LLMs的推理能力,使其能与大型模型(如GPT-4)竞争。

 
在这里插入图片描述

Think-on-Graph 新技术 对比 之前的技术:

(a) LLM-only(只有大模型的情况):

在这个例子中,LLM独立地尝试回答问题:“What is the majority party now in the country where Canberra is located?”。

LLM使用的是链式思考,首先确认堪培拉是澳大利亚的首都,然后基于2021年9月的信息,认为澳大利亚总理是斯科特·莫里森,属于自由党,所以答案应该是自由党。

然而,这个答案是错误的,因为LLM的知识是过时的。

 

(b) LLM ⊕ KG(例如,通过LLM生成的SPARQL查询):

在这种范式下,LLM首先生成一个SPARQL查询来检索知识图谱(KG)。

在这个例子中,查询是为了找到堪培拉的国家,并检索该国家的主要政党。

由于知识图谱中不存在“majority party”的相关信息,这种方法未能得出正确答案。

 

© LLM ⊗ KG(例如,Think-on-Graph):

这个范式展示了LLM与知识图谱紧密协作。

首先,LLM通过探索知识图谱中与堪培拉有关的三元组(triples)。

然后,通过“Think”步骤,它找到了最相关的三元组是(澳大利亚,首相,安东尼·阿尔巴尼斯)。

由于LLM知道安东尼·阿尔巴尼斯属于劳工党,并且自2019年以来一直是澳大利亚劳工党(ALP)的领导者,因此能够推断出正确答案是劳工党。

 

所以,Think-on-Graph 这种LLM与知识图谱的新技术,效果也是最好的。

  • LLM ⊗ KG (Think-on-Graph) 方法通过结合LLM的动态推理能力和KG的丰富、结构化知识
  • 显著提升了解答的准确性和可靠性
  • 解决了仅使用LLM时的知识过时问题 和 LLM与KG结合时的信息缺失问题

 

Think-on-Graph 工作流程:

工作流程分为三个深度搜索阶段(Depth 1、Depth 2、Depth 3),逐步深化搜索,每个阶段都深入探索与前一阶段发现的实体相关的更多信息。

  • 以回答问题:“堪培拉所在的国家目前的主要政党是什么?”
  1. Depth 1:识别问题中的关键实体(堪培拉)和与其直接相关的属性(它是哪个国家的首都)。

    • 搜索: 以堪培拉为中心,探索相关实体和关系。
    • 剪枝: 对探索结果进行评估,保留重要的实体和关系,淘汰评分低的部分。在这个阶段,确定堪培拉是一个地域,是澳大利亚的首都。
  2. Depth 2:以第一阶段确定的国家(澳大利亚)为中心,进一步探索与政府头目(首相)相关的信息。

    • 搜索: 以澳大利亚为中心,进一步探索与政府、首相等相关的实体和关系。
    • 剪枝: 继续评估和淘汰,确定了澳大利亚的首相是安东尼·阿尔巴尼斯。
  3. Depth 3:最后,确定首相(安东尼·阿尔巴尼斯)的政党隶属,从而得出国家的主要政党。

    • 搜索: 最后以安东尼·阿尔巴尼斯为中心,搜索与政党相关的实体和关系。
    • 剪枝: 最终找到安东尼·阿尔巴尼斯与劳工党的关系。

在每个深度的搜索和剪枝过程中,发光的实体代表中心实体,粗体实体代表被选中的中心实体。

图中的边缘的黑暗度代表了由LLM给出的评分,虚线表示由于评分低而被剪枝的关系(精准回答,避免模糊宽泛)。

最终,基于这些推理路径,生成的答案是“Labor Party”(劳工党)。

本质:ToG通过逐步深入的探索和剪枝过程,结合LLM的推理能力和KG的丰富数据,动态构建推理路径以提供精准且可追溯的答案。

 


ToG 算法步骤:想想再查,查查再想

ToG方法的主要问题是如何利用LLM进行深度推理以回答基于知识图谱的复杂问题。

ToG是通过 beam search 在知识图谱上执行搜索,以此来解决问题。

  1. 子问题1:初始化图搜索。

    • 子解法1:定位初始实体。
      之所以使用这个解法,是因为需要在知识图谱中确定起始点,这是构建推理路径的基础。
  2. 子问题2:探索。

    • 子解法2.1:关系探索。
      用于从当前已知实体探索可能的关系,因为这有助于确定接下来可能的推理方向。
    • 子解法2.2:实体探索。
      接着用于从已知关系探索相关实体,因为这可以进一步扩展推理路径。
  3. 子问题3:推理。

    • 子解法3:评估推理路径。
      之所以使用此解法,是因为需要评估当前推理路径是否足够回答问题,如果足够则生成答案,否则继续探索和推理过程。

 

还有 ToG-R(基于关系的Think-on-Graph 变种):

  1. 子问题1:减少LLM调用次数。

    • 子解法1:随机剪枝。
      之所以使用这个解法,是因为它减少了使用LLM进行实体剪枝的需要,这样可以降低总体成本和推理时间。
  2. 子问题2:强调关系文字信息。

    • 子解法2:关系链探索。
      选择这种解法是因为它强调了关系的文字信息,当中间实体的文字信息缺失或LLM不熟悉时,可以减少误导推理的风险。

ToG 方法的本质在于,通过LLM执行的知识图谱上的beam search,分阶段探索和评估推理路径,以便深度推理出复杂问题的精确答案,而 ToG-R 进一步减少了LLM调用,强调文字信息,提高了效率和鲁棒性。

  • 初始化图搜索的问题,通过定位初始实体的子解法来解决。
  • 探索问题,通过关系探索和实体探索两个子解法来解决。
  • 推理问题,通过评估推理路径的子解法来解决。
  • ToG-R 特有的问题,通过随机剪枝和关系链探索两个子解法来解决。

在这里插入图片描述

 
假设我们要回答的问题是:“谁是最近一次举办奥运会的国家的现任总统?”

  1. 初始化图搜索:

    • 我们首先利用LLM确定问题中的关键实体“最近一次举办奥运会的国家”,并将其作为搜索的起始点。
  2. 探索:

    • 关系探索:
      在知识图谱中搜索与“奥运会举办国”相关的实体关系,比如“举办年份”和“国家”。
    • 实体探索:
      接下来,我们基于“举办年份”这一关系,探索出最近一次举办奥运会的具体国家,例如“日本”。
  3. 推理:

    • 根据已经探索到的信息,评估是否有足够的数据来回答原问题。
    • 如果已知的国家“日本”和关系“现任总统”足够回答问题,我们就进行下一步;
    • 如果不足够,就需要进一步的探索和推理。

在ToG-R中,如果在实体探索阶段关系信息不够充分,我们可能会采用随机剪枝策略,选择一个可能的实体,例如随机选择一位政治人物,然后继续下一轮探索。

 


实验结果

ToG这个算法通过在各种不同的数据集上的测试显示出它很擅长处理需要多步逻辑推理的复杂问题,这得益于它能够在多个层面上全面理解和应用知识图谱中的信息。

  • 在和其他方法的比较中,ToG特别展现了它的泛化能力,即使在没有针对特定问题集进行训练的情况下,它也能提供准确的答案。

实验中还特别考察了不同大小的语言模型对ToG的影响。

  • 结果表明,更大的模型能够更好地发挥知识图谱的潜力,但即便是较小的模型,ToG也能超越只用最大模型的传统方法。
  • 这意味着使用ToG,我们可以用更经济的小模型来代替昂贵的大模型,特别是在那些外部知识图谱能提供帮助的特定场景中。

此外,ToG的性能也受到搜索深度和宽度的影响,通过调整这两个参数,ToG的表现有所提升,尽管提升的幅度在深度超过一定阈值后会减弱。

  • 在提高性能的同时也要考虑到计算成本。

不同知识图谱的选择也对ToG的表现有显著影响。

  • 例如,在构建于Freebase上的数据集中,ToG的表现更好,这显示了匹配度高的知识图谱对提升性能至关重要。

  • 而且,不同的提示设计,如三元组格式相比自然语言句子,对于ToG来说也有更好的效果。

在探索过程中使用不同的剪枝工具也会影响ToG的表现。

  • 实验表明,与BM25或SentenceBERT相比,使用LLM作为剪枝工具可以获得更好的结果,尽管后者在效率上有优势。

最后,ToG的一个独特之处在于它提供了知识的追溯性和可校正性。

  • 如果用户发现了推理过程中的错误,他们可以通过ToG回溯并纠正知识图谱中的错误信息。
  • 不仅增强了LLM使用知识图谱的能力,还提升了知识图谱本身的质量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/371812.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开源节点框架STNodeEditor使用

节点,一般都为树形Tree结构,如TreeNode,XmlNode。 树形结构有其关键属性Parent【父节点】,Children【子节点】 LinkedListNode为链表线性结构,有其关键属性Next【下一个】,Previous【上一个】&#xff0c…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--强化学习、模仿学习、机器人

专属领域论文订阅 关注{晓理紫|小李子},每日更新论文,如感兴趣,请转发给有需要的同学,谢谢支持 如果你感觉对你有所帮助,请关注我,每日准时为你推送最新论文。 为了答谢各位网友的支持,从今日起…

源码梳理(2)SpringMVC的执行流程及涉及到的相关组件

文章目录 1,Spring MVC核心组件DispatcherServlet1.1 DispatcherServlet的继承关系1.2 DispatcherServlet的doDispatch方法 2,核心组件HandlerMapping(处理器映射器)3,核心组件HandlerAdapter(处理器适配器…

前端文艺复兴:Vue3真的需要Pinia吗?

前言 说起Pinia,熟悉 vue3 开发的程序员肯定不会陌生,甚至被vue官方推荐取代vuex,成为vue全家桶之一。 疑惑 还记得之前用 vuex 时,更改 state 还分同步和异步(这里有尤雨溪的回答www.zhihu.com/question/48… &…

Hadoop-生产调优

第1章 HDFS-核心参数 1.1 NameNode内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150 byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150byte ≈ 9.1 亿G MB KB Byte 2&#xff09…

undefined symbol: avio_protocol_get_class, version LIBAVFORMAT_58

rv1126上进行编译和在虚拟机里面进行交叉编译ffmpeg都不行 解决办法查看 查看安装的ffmpeg链接的文件 ldd ./ffmpeg rootEASY-EAI-NANO:/home/nano/ffmpeg-4.3.6# ldd ffmpeg linux-vdso.so.1 (0xaeebd000)libavdevice.so.58 > /lib/arm-linux-gnueabihf/libavde…

continue语句

一、continue语句 1、continue语句介绍 2、continue语句流程图 3、快速入门案例 4、continue语句的标签

基于Go-Kit的Golang整洁架构实践

如何用Golang实现简洁架构?本文介绍了基于Go-Kit实现简洁架构的尝试,通过示例介绍了简洁架构的具体实现。原文: Why is Go-Kit Perfect For Clean Architecture in Golang? 简介 Go是整洁架构(Clean Architecture)的完美选择。整洁架构本身只是一种方法…

基于python+控制台的车辆信息管理系统

基于python控制台的车辆信息管理系统 一、系统介绍二、效果展示三、其他系统实现四、获取源码 一、系统介绍 打印功能菜单、添加车辆信息、删除车辆信息、修改车辆信息、显示车辆信息、退出系统,并且需要接收用户的输入,在根据输入内容调用相应函数实现…

深度学习介绍

对于具备完善业务逻辑的任务,大多数情况下,正常的人都可以给出一个符合业务逻辑的应用程序。但是对于一些包含超过人类所能考虑到的逻辑的任务,例如面对如下任务: 编写一个应用程序,接受地理信息、卫星图像和一些历史…

指针的深入理解(四)

这节主要讨论sizeof和strlen的区别,以及一些理解题。 sizeof 求的是对象的大小,深入理解一点就是:这个对象,他一定有一块对应的内存空间。求的就是这一块内存空间。 strlen 只能用来求字符串, 求取的是字符串的长度。…

Unity中blendtree和state间的过渡

混合树状态之间的过渡 如果属于此过渡的当前状态或下一状态是混合树状态,则混合树参数将出现在 Inspector 中。通过调整这些值可预览在混合树值设置为不同配置时的过渡表现情况。 如果混合树包含不同长度的剪辑,您应该测试在显示短剪辑和长剪辑时的过渡表…

Mocaverse NFT 概览与数据分析

作者:stellafootprint.network 编译:mingfootprint.network 数据源:Mocaverse NFT Collection Dashboard Mocaverse 是 Animoca Brands 推出的专属 NFT(非同质化代币)系列,包含 8,888 个独特的 "M…

深入理解TCP网络协议(3)

目录 1.前言 2.流量控制 2.阻塞控制 3.延时应答 4.捎带应答 5.面向字节流 6.缓冲区 7.粘包问题 8.TCP异常情况 9.小结 1.前言 在前面的博客中,我们重点介绍了TCP协议的一些属性,有连接属性的三次握手和四次挥手,还有保证数据安全的重传机制和确认应答,还有为了提高效率…

2024美赛E题成品论文22页详细讲解+完整代码数据汇总

E题社区抗灾能力综合评估与决策模型研究 (完整版在文末) 摘要:社区抗灾能力的提升对于灾害风险管理至关重要。本研究基于机器学 习方法,构建了社区抗灾能力预测模型,以评估社区在灾害事件中的表现。首先, 我…

在maven环境中使用GraalVM来构建本地原生应用程序(一)构建本地可执行文件

文章目录 前言一、GraalVM安装二、初步使用三、踩坑记录1、JSON转换问题2、反射、资源、jni的调用问题3、HTTPS调用问题4、Linux下CPU架构问题5、Linux下GLIBC版本的问题6、部分Windows系统无法缺少相关的库文件 总结 前言 随着Java17的更新,jdk又推出了一个GraalV…

【lesson10】高并发内存池细节优化

文章目录 大于256KB的大块内存申请问题大于256KB的大块释放申请问题使用定长内存池脱离使用new释放对象时优化为不传对象大小完整版代码Common.hObjectPool.hThreadCache.hThreadCache.cppConcurrentAlloc.hCentralCache.hCentralCache.cppPageCache.hPageCache.cpp 大于256KB的…

SpringBoot中数据库的连接及Mybatis的配置和使用

目录 1 在pom.xml中引入相关依赖 2 对数据库进行配置 2.1 配置application.yml 2.2 idea连接数据库 (3.2.1有用到) 3 Mybatis的使用 3.1 测试文件的引入 3.2 使用 3.2.1 使用注解(有小技巧(✪ω✪)) 3.2.2 使用动态sql 1 在pom.xml中引入相关依赖 <dependencies&g…

【DDD】学习笔记-EAS 的整体架构实践

为了得到系统的整体架构&#xff0c;我们还欠缺什么呢&#xff1f;所谓“架构”&#xff0c;是“以组件、组件之间的关系、组件与环境之间的关系为内容的某一系统的基本组织结构&#xff0c;以及指导上述内容设计与演化的原则”。之所以要确定系统的组件、组件关系以及设计与演…

线上编程答疑解惑回顾,初学编程中文编程在线屏幕共享演示

线上编程答疑解惑回顾&#xff0c;初学编程中文编程在线屏幕共享演示 一、学编程过程中有不懂的怎么办&#xff1f; 编程入门视频教程链接 https://edu.csdn.net/course/detail/39036 编程工具及实例源码文件下载可以点击最下方官网卡片——软件下载——常用工具下载——编…
最新文章