MATLAB实战:传染病模型仿真实现

以下是一个使用MATLAB实现传染病模型(SIR和SEIR)仿真的完整解决方案,包含参数分析和干预措施模拟:

%% 传染病模型仿真工具箱
% 包含SIR、SEIR模型,支持参数调整和干预措施模拟
% 使用ode45求解微分方程

function epidemic_modeling()
    % 主控制界面
    fig = uifigure('Name', '传染病模型仿真', 'Position', [100 100 800 600]);
    
    % 模型选择
    model_dropdown = uidropdown(fig, ...
        'Position', [50 550 100 30], ...
        'Items', {'SIR模型', 'SEIR模型'});
    
    % 参数设置面板
    param_panel = uipanel(fig, 'Title', '参数设置', ...
        'Position', [50 300 300 200]);
    
    % 初始人群设置
    uilabel(param_panel, 'Text', '易感者比例:', 'Position', [20 150 80 20]);
    s0_edit = uieditfield(param_panel, 'numeric', ...
        'Position', [120 150 60 20], 'Value', 0.99);
    
    uilabel(param_panel, 'Text', '感染者比例:', 'Position', [20 120 80 20]);
    i0_edit = uieditfield(param_panel, 'numeric', ...
        'Position', [120 120 60 20], 'Value', 0.01);
    
    % SIR参数
    uilabel(param_panel, 'Text', '传染率(β):', 'Position', [20 90 80 20]);
    beta_edit = uieditfield(param_panel, 'numeric', ...
        'Position', [120 90 60 20], 'Value', 0.3);
    
    uilabel(param_panel, 'Text', '恢复率(γ):', 'Position', [20 60 80 20]);
    gamma_edit = uieditfield(param_panel, 'numeric', ...
        'Position', [120 60 60 20], 'Value', 0.1);
    
    % SEIR额外参数 (默认隐藏)
    uilabel(param_panel, 'Text', '潜伏期(1/σ):', 'Position', [20 30 80 20], 'Visible', 'off');
    sigma_edit = uieditfield(param_panel, 'numeric', ...
        'Position', [120 30 60 20], 'Value', 0.2, 'Visible', 'off');
    
    % 干预措施面板
    intervention_panel = uipanel(fig, 'Title', '干预措施', ...
        'Position', [400 300 300 200]);
    
    uilabel(intervention_panel, 'Text', '隔离强度:', 'Position', [20 150 80 20]);
    isolation_slider = uislider(intervention_panel, ...
        'Position', [20 130 200 3], 'Limits', [0 1], 'Value', 0);
    
    uilabel(intervention_panel, 'Text', '接种比例:', 'Position', [20 90 80 20]);
    vaccination_slider = uislider(intervention_panel, ...
        'Position', [20 70 200 3], 'Limits', [0 1], 'Value', 0);
    
    uilabel(intervention_panel, 'Text', '干预时间:', 'Position', [20 30 80 20]);
    intervention_time = uieditfield(intervention_panel, 'numeric', ...
        'Position', [120 30 60 20], 'Value', 30);
    
    % 按钮
    run_btn = uibutton(fig, 'push', ...
        'Text', '运行仿真', ...
        'Position', [50 250 100 30], ...
        'ButtonPushedFcn', @(btn,event) runSimulation());
    
    % 绘图区域
    ax = uiaxes(fig, 'Position', [100 50 600 200]);
    
    % 模型切换回调
    model_dropdown.ValueChangedFcn = @(src,event) toggleModel();
    
    %% 模型切换函数
    function toggleModel()
        if strcmp(model_dropdown.Value, 'SEIR模型')
            sigma_edit.Visible = 'on';
            sigma_edit.Parent.Children(1).Visible = 'on'; % 显示标签
        else
            sigma_edit.Visible = 'off';
            sigma_edit.Parent.Children(1).Visible = 'off'; % 隐藏标签
        end
    end

    %% 主仿真函数
    function runSimulation()
        % 获取参数
        S0 = s0_edit.Value;
        I0 = i0_edit.Value;
        beta = beta_edit.Value;
        gamma = gamma_edit.Value;
        sigma = sigma_edit.Value;
        iso_strength = isolation_slider.Value;
        vacc_ratio = vaccination_slider.Value;
        t_intervention = intervention_time.Value;
        
        % 总人口归一化
        total_pop = S0 + I0;
        R0 = 0; % 初始康复者
        E0 = 0; % 初始潜伏者
        
        % 时间范围 (天)
        tspan = [0 200];
        
        % 根据模型选择设置初始条件和方程
        if strcmp(model_dropdown.Value, 'SIR模型')
            y0 = [S0, I0, R0];
            [t, y] = ode45(@(t,y) sir_ode(t, y, beta, gamma, iso_strength, vacc_ratio, t_intervention), tspan, y0);
            plotResults(ax, t, y, 'SIR模型');
        else
            y0 = [S0, E0, I0, R0];
            [t, y] = ode45(@(t,y) seir_ode(t, y, beta, gamma, sigma, iso_strength, vacc_ratio, t_intervention), tspan, y0);
            plotResults(ax, t, y, 'SEIR模型');
        end
    end

    %% SIR模型微分方程
    function dydt = sir_ode(t, y, beta, gamma, iso_strength, vacc_ratio, t_interv)
        S = y(1);
        I = y(2);
        R = y(3);
        
        % 应用干预措施
        current_beta = beta;
        if t >= t_interv
            % 实施隔离:降低传染率
            current_beta = beta * (1 - iso_strength);
            
            % 实施接种:部分易感者直接转为康复者
            if vacc_ratio > 0
                conversion = min(vacc_ratio * S, S);
                S = S - conversion;
                R = R + conversion;
            end
        end
        
        % SIR方程
        dSdt = -current_beta * S * I;
        dIdt = current_beta * S * I - gamma * I;
        dRdt = gamma * I;
        
        dydt = [dSdt; dIdt; dRdt];
    end

    %% SEIR模型微分方程
    function dydt = seir_ode(t, y, beta, gamma, sigma, iso_strength, vacc_ratio, t_interv)
        S = y(1);
        E = y(2);
        I = y(3);
        R = y(4);
        
        % 应用干预措施
        current_beta = beta;
        if t >= t_interv
            current_beta = beta * (1 - iso_strength);
            
            if vacc_ratio > 0
                conversion = min(vacc_ratio * S, S);
                S = S - conversion;
                R = R + conversion;
            end
        end
        
        % SEIR方程
        dSdt = -current_beta * S * I;
        dEdt = current_beta * S * I - sigma * E;
        dIdt = sigma * E - gamma * I;
        dRdt = gamma * I;
        
        dydt = [dSdt; dEdt; dIdt; dRdt];
    end

    %% 结果可视化
    function plotResults(ax, t, y, model_name)
        cla(ax);
        hold(ax, 'on');
        
        if contains(model_name, 'SIR')
            plot(ax, t, y(:,1), 'b', 'LineWidth', 2, 'DisplayName', '易感者(S)');
            plot(ax, t, y(:,2), 'r', 'LineWidth', 2, 'DisplayName', '感染者(I)');
            plot(ax, t, y(:,3), 'g', 'LineWidth', 2, 'DisplayName', '康复者(R)');
        else
            plot(ax, t, y(:,1), 'b', 'LineWidth', 2, 'DisplayName', '易感者(S)');
            plot(ax, t, y(:,2), 'm', 'LineWidth', 2, 'DisplayName', '潜伏者(E)');
            plot(ax, t, y(:,3), 'r', 'LineWidth', 2, 'DisplayName', '感染者(I)');
            plot(ax, t, y(:,4), 'g', 'LineWidth', 2, 'DisplayName', '康复者(R)');
        end
        
        title(ax, [model_name ' - 疫情传播模拟']);
        xlabel(ax, '时间 (天)');
        ylabel(ax, '人群比例');
        legend(ax, 'Location', 'best');
        grid(ax, 'on');
        hold(ax, 'off');
    end
end

功能说明

  1. 模型实现

    • SIR模型:易感者(S) → 感染者(I) → 康复者(R)

    • SEIR模型:易感者(S) → 潜伏者(E) → 感染者(I) → 康复者(R)

  2. 参数分析

    • 传染率(β):控制疾病传播速度

    • 恢复率(γ):影响感染者恢复速度(1/γ = 平均感染期)

    • 潜伏期(1/σ):SEIR模型特有参数(1/σ = 平均潜伏期)

  3. 干预措施

    • 隔离:降低传染率(通过滑动条控制强度)

    • 疫苗接种:将部分易感者直接转为康复者

    • 干预时间:指定措施开始实施的时间点

  4. 可视化

    • 动态显示各类人群比例随时间变化

    • 不同人群用颜色区分:蓝色(易感者)、红色(感染者)、绿色(康复者)、紫色(潜伏者)

使用方法

  1. 在MATLAB中运行epidemic_modeling()启动GUI

  2. 选择模型(SIR或SEIR)

  3. 设置初始人群比例和疾病参数

  4. 调整干预措施参数

  5. 点击"运行仿真"查看结果

关键技能点实现

  1. 微分方程建模

    • SIR和SEIR模型用常微分方程组表示

    • 方程包含人群转换过程

  2. ode45求解

    • 使用MATLAB内置求解器处理非刚性微分方程

    • 支持时变参数(干预措施)

  3. 参数分析

    • GUI滑块实时调整参数

    • 可比较不同参数下的传播曲线

  4. 干预措施模拟

    • 隔离:降低有效传染率 β → β(1-强度)

    • 接种:直接转移易感人群 S → R

  5. 可视化

    • 多曲线动态绘制

    • 图例和坐标标签

    • 网格辅助线

此代码提供了完整的传染病仿真框架,可通过调整参数和干预措施模拟不同场景下的疫情发展,适用于教学演示和疫情政策效果评估。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/373.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

系统架构设计师(一):计算机系统基础知识

系统架构设计师(一):计算机系统基础知识 引言计算机系统概述计算机硬件处理器处理器指令集常见处理器 存储器总线总线性能指标总线分类按照总线在计算机中所处的位置划分按照连接方式分类按照功能分类 接口接口分类 计算机软件文件系统文件类…

汽车安全:功能安全FuSa、预期功能安全SOTIF与网络安全Cybersecurity 解析

汽车安全的三重防线:深入解析FuSa、SOTIF与网络安全技术 现代汽车已成为装有数千个传感器的移动计算机,安全挑战比传统车辆复杂百倍。 随着汽车智能化、网联化飞速发展,汽车电子电气架构已从简单的分布式控制系统演变为复杂的移动计算平台。现…

GitHub 趋势日报 (2025年05月31日)

📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 1153 prompt-eng-interactive-tutorial 509 BillionMail 435 ai-agents-for-begin…

飞腾D2000与FPGA结合的主板

UD VPX-404是基于高速模拟/数字采集回放、FPGA信号实时处理、CPU主控、高速SSD实时存储架构开发的一款高度集成的信号处理组合模块,采用6U VPX架构,模块装上外壳即为独立整机,方便用户二次开发。 UD VPX-404模块的国产率可达到100%&#xff0…

前端面经 协商缓存和强缓存

HHTTPTTP缓存 协商缓存和强缓存 核心区别是否向服务器发起请求验证资源过期 强缓存 浏览器直接读取本地缓存,不发请求 HTTP响应头 Cache-Control:max-age3600资源有效期 Expires优先级低 如果有效浏览器返回200(浏览器换伪造的200) 应用静态资源 协商缓存 OK如果 1强缓…

【NLP 78、手搓Transformer模型结构】

你以为走不出的淤泥,也迟早会云淡风轻 —— 25.5.31 引言 ——《Attention is all you need》 《Attention is all you need》这篇论文可以说是自然语言处理领域的一座里程碑,它提出的 Transformer 结构带来了一场技术革命。 研究背景与目标 在 Transfo…

Baklib内容中台革新企业知识实践

Baklib智能知识中枢构建 作为现代企业知识管理的核心架构,Baklib内容中台通过整合多源异构数据形成智能化知识中枢,实现从信息采集到价值转化的全链路管理。其底层采用跨平台数据贯通技术,支持API接口与企业现有CRM、ERP系统无缝对接&#x…

【前端】SPA v.s. MPA

链接:页面结构 误区 页面结构管理有两种常见方式:路由形式 和 组件形式。路由形式 对应MPA ,组件形式对应SPA ❌ 误区 1:路由形式 MPA❌ 路由是 SPA 和 MPA 共有的概念,区别在于路由映射的对象: MPA 的…

在Ubuntu20.04上安装ROS Noetic

本章教程,主要记录在Ubuntu20.04上安装ROS Noetic。 一、添加软件源 sudo sh -c . /etc/lsb-release && echo "deb http://mirrors.tuna.tsinghua.edu.cn/ros/ubuntu/ `lsb_release -cs` main" > /etc/apt/sources.list.d/ros-latest.list二、设置秘钥 …

基于粒子滤波的PSK信号解调实现

基于粒子滤波的PSK信号解调实现 一、引言 相移键控(PSK)是数字通信中广泛应用的调制技术。在非高斯噪声和动态相位偏移环境下,传统锁相环(PLL)性能受限。粒子滤波(Particle Filter)作为一种序列蒙特卡洛方法,能有效处理非线性/非高斯系统的状态估计问题。本文将详细阐…

Idea 配置 Maven 环境

下载 Maven 官网:https://maven.apache.org/index.html 点击左侧 Downloads,然后选择 Files 中的 zip 包下载(下载慢可以使用迅雷) 配置 Maven 将压缩包解压,比如我解压后放到了 D:\developer\environment\apache-…

基于微服务架构的社交学习平台WEB系统的设计与实现

设计(论文)题目 基于微服务架构的社交学习平台WEB系统的设计与实现 摘 要 社交学习平台 web 系统要为学习者打造一个开放、互动且社交性强的在线教育环境,打算采用微服务架构来设计并实现一个社交学习平台 web 系统,以此适应学…