【Linux取经路】文件系统之缓冲区

在这里插入图片描述

文章目录

  • 一、先看现象
  • 二、用户缓冲区的引入
  • 三、用户缓冲区的刷新策略
  • 四、为什么要有用户缓冲区
  • 五、现象解释
  • 六、结语

一、先看现象

#include <stdio.h>
#include <string.h>
#include <unistd.h>

int main()
{
    const char* fstr = "Hello fwrite\n";
    const char* str = "Hello write\n";

    printf("Hello printf\n");
    fprintf(stdout, "Hello fprintf\n");
    fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数

    write(1, str, strlen(str)); // 返回值是写入成功的字节数

    // fork();
    return 0;
}

在这里插入图片描述
结构分析:带 fork 的输出重定向最终把有一些内容向 log.txt 文件中写入了多次,并且打印顺序也有所不同。

int main()
{
    const char* fstr = "Hello fwrite";
    const char* str = "Hello write";

    printf("Hello printf");
    fprintf(stdout, "Hello fprintf");
    fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数

    close(1);

    // write(1, str, strlen(str)); // 返回值是写入成功的字节数

    // fork();
    return 0;
}

在这里插入图片描述
结果分析:代码中只使用了库函数向显示器中进行写入,并且在字符串的结尾没有加 \n,在最后面将标准输出对应的文件描述符进行了关闭,最终显示器上什么也没有。上一段代码在字符串的结尾加上了 \n 最终字符串被成功的打印到了屏幕上。

int main()
{
    const char* str = "Hello write";

    write(1, str, strlen(str)); // 返回值是写入成功的字节数
    close(1);
    
    return 0;
}

在这里插入图片描述
结果分析:字符串的结尾依然不加 \n,但是这一次采用系统调用接口,最后仍然将标准输出对应的文件描述符进行关闭,这一次字符串被成功的打印了出来。

二、用户缓冲区的引入

write 为什么能将不带 \n 的字符串写入到显示器文件中。首先我们需要明确一点进程打开的每一个文件都有一个属于自己的操作系统级别的文件缓冲区,该缓冲区的存在,可以减少对外设的读写操作以提高计算机的效率。举个栗子,在一个进程中向磁盘里的同一个文件进多次行写入,文件缓冲区的存在,可以将每次写入的内容先存储在文件缓冲区中,最后在程序退出或者调用 close 的时候,一次性将文件缓冲区中的所有内容刷新到磁盘。如果没有该文件缓冲区,那在进程里对文件进行 n 次写操做,就要对应 n 次向磁盘的写操作,CPU 和外设之间是存在非常大的速度差的,这样效率会非常低。

write 作为系统调用接口,它就是直接向文件缓冲区中写入,最后在调用 close 接口或者程序退出的时候,会将文件缓冲区的内容刷新到对应的外设中。

printffprintffwrite 底层一定是封装了 write 系统调用接口,那为什么使用 write 系统调用接口就可以将字符串写入到显示器,使用 C 库函数没能把字符串写入到显示器文件?原因在进度条的那篇文章中讲过,我们使用的这些 C 库函数,是把字符串写入到了缓冲区中,这个缓冲区和上面的文件缓冲区有所不同,这里说的缓冲区是 C 语言给我们提供的语言层面的缓冲区,也叫做用户级缓冲区\n 具有刷新用户级缓冲区的作用,因此不加 \n 并且在程序结束前将显示器对应的文件描述符进行了关闭,最终就导致字符串在用户级缓冲区中,没有被刷新到文件缓冲区,所以屏幕上就什么也没有。这里我们可以肯定,在这些 C 库函数中,并不是立即调用 write 接口,而是在遇到 \n 后才去调用 write 接口将用户缓冲区的内容刷新到文件缓冲区中。

在这里插入图片描述

总结:使用 C 系统调用接口向文件中写入,写入的内容先被存储在用户缓冲区中,在合适的时候(遇到 \n)才会进行刷新,这里刷新的本质是调用 write 将数据从用户缓冲区写入内核。

之前说的 exit 会刷新缓冲区,其实就是刷新用户缓冲区,因为 exit 作为 C 库函数,可以看见用户缓冲区,而 _exit 作为系统调用接口,无法看到语言层面的用户缓冲区,因此也就无法刷新用户缓冲区。

三、用户缓冲区的刷新策略

  • 无缓冲:直接刷新,数据不在用户缓冲区中停留。

  • 行缓冲:不刷新,直到碰到 \n

  • 全缓冲:缓冲区满了才刷新。

所谓刷新就是调用 write 接口将数据写入操作系统中的文件缓冲区。显示器文件对应采用的就是行缓冲,向磁盘文件中写入采用的是全缓冲。进程在退出的时候也会刷新用户缓冲区,还可以调用 fflush 进行刷新。

四、为什么要有用户缓冲区

  • 解决效率问题,缓冲区就像菜鸟驿站,不需要我们自己坐火车坐飞机去送东西,而是直接交给菜鸟驿站,然后就可以干自己的事情了,菜鸟驿站可以选择攒上一大批快递然后统一寄送出去。用户缓冲区的存在本质上提高了 C 语言的效率,也就是提高了用户的效率,因为 C 语言是程序员在使用,在使用 C 库函数进行文件写入时,大部分情况只需要把数据交给缓冲区,然后就可以快速的返回,不需要每一次都亲力亲为的去和操作系统打交道。

  • 配合格式化,有些和文件写入相关的 C 库函数是格式化输出函数,在我们看来,它可以写入整形、符点型,但是最终都是以字符串的形式进行写入。格式化就是将类型全都转化成字符串,先写入到用户缓冲区,用户缓冲区中存的一定都是字符串。

用户缓冲区,有进也有出,将数据写入到用户缓冲区中就就叫做进,将用户缓冲区中的数据刷新到内核中的文件缓冲区中,被刷新的数据就可以从用户缓冲区中删掉,这就叫做出。用户缓冲就像就像水流一样源源不断,流的概念就是因此而来。

小TipsFILE 里面就有对应打开文件的缓冲区字段和维护信息。每个被进程打开文件都有自己对应的文件缓冲区。FILE 对象属于用户,用户缓冲区可以看作是在堆上申请的一块空间。

五、现象解释

这下再来解释上面代码中有 fork 然后重定向,写入了多次的原因。首先重定向后,将本来向显示器文件写入的内容,写到了磁盘文件,显示器文件的缓冲区采用行缓冲,即遇到 \n 就会刷新,而磁盘文件采用的是全缓冲,当缓冲区满了才刷新。因此在重定向后,会把三条 C 库函数写入的内容全部保存到缓冲区中,然后调用 fork 创建子进程,此时父子进程代码共享,数据写时拷贝,在程序退出的时候回去刷新用户缓冲区,上面说过,刷新就是将用户缓冲区中的数据写入到内核,然后将用户缓冲区中的内容清空,上面还说过,缓冲区就是在堆上申请的一段空间,可以看作数据部分,因为要删除数据,所以就会进行写时拷贝,此时之前父进程用户缓冲区中的内容就会给子进程拷贝一份,然后父子进程都执行刷新动作,各自刷新自己的缓冲区数据,这就是为什么最终出现多份的原因。没有重定向,只向显示器打印四条消息,是因为显示器采用的是行刷新策略,在调用 fork 前,对应的字符串就已经被刷新出去了。在 fork 的时候,父进程的用户缓冲区中是空的,什么也没有。

磁盘文件全缓冲验证

int main()
{
    const char* fstr = "Hello fwrite\n";
    const char* str = "Hello write\n";

    printf("Hello printf\n");
    sleep(2);
    fprintf(stdout, "Hello fprintf\n");
    sleep(2);
    fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数
    sleep(2);

    write(1, str, strlen(str)); // 返回值是写入成功的字节数

    sleep(5);

    fork();
    return 0;
}

在这里插入图片描述
分析:最先将 write 内容写入到文件中,因为它是直接写入到文件缓冲区,而剩下的 C 库函数对应的内容是统一一次全部刷新到内核,即使每个字符串后面都有 \n,但最后还是统一全部刷新,这就证明了磁盘文件采用的是全刷新策略。

六、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/403753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电路设计(26)——速度表的multisim仿真

1.设计要求 设计一款电路&#xff0c;能够实时显示当前速度。 用输入信号模拟行驶的汽车&#xff0c;信号频率的1hz代表汽车速度的1m/s。最后速度显示&#xff0c;以km/h为单位。 2.电路设计 当输入信号频率为40HZ时&#xff0c;显示的速度应该为144KM/h&#xff0c;仿真结果为…

petalinux_zynq7 驱动DAC以及ADC模块之一:建立IP

0. 环境 - ubuntu18 - vivado 2018.3 - mizar z7010 ada106模块 1. vivado 1.1 创建vivado工程 运行vivado source /tools/Xilinx/Vivado/2018.3/settings64.sh vivado& 创建vivado工程 Vivado -> Create Project -> Next -> -> Project name: …

OpenCV中图像的HSV色彩空间

在HSV 色彩空间中H, S, V 这三个通道分别代表着色相(Hue)&#xff0c;饱和度(Saturation)和明度(Value)&#xff0c; 原本输出的HSV 的取值范围分别是0-360, 0-1, 0-1; 但是为了匹配目标数据类型OpenCV 将每个通道的取值范围都做了修改,于是就变成了0-180, 0-255, 0-255 impo…

人机交互新研究:MIT开发了结合脑电和眼电的新式眼镜,与机器狗交互

还记得之前的AI读心术吗&#xff1f;最近&#xff0c;「心想事成」的能力再次进化&#xff0c; ——人类可以通过自己的想法直接控制机器人了&#xff01; 来自麻省理工的研究人员发表了Ddog项目&#xff0c;通过自己开发的脑机接口&#xff08;BCI&#xff09;设备&#xff…

设置墙、楼板每层的厚度和材质——群问题整理003

你好&#xff0c;这里是BIM的乐趣&#xff0c;我是九哥~ 今天分享的是设置墙、楼板等每层的厚度和材质。 我们都知道&#xff0c;Revit中墙、板这类系统族&#xff0c;厚度设置和普通族是不太一样的&#xff0c;他的厚度参数可读&#xff0c;但是并不可设置&#xff0c;因为我…

flannel网络拓扑

测试环境创建 在k8s中部署flannel网络插件 https://blog.csdn.net/weixin_64124795/article/details/128894411 参考文章部署k8s集群和flannel网络插件 我的k8s集群物理环境 我的集群中只有两个节点master和node1节点 [rootmaster sjs]# kubectl get node NAME STATU…

MySQL 索引原理以及 SQL 优化

索引 索引&#xff1a;一种有序的存储结构&#xff0c;按照单个或者多个列的值进行排序。索引的目的&#xff1a;提升搜索效率。索引分类&#xff1a; 数据结构 B 树索引&#xff08;映射的是磁盘数据&#xff09;hash 索引&#xff08;快速锁定内存数据&#xff09;全文索引 …

华为OD机试真题-查找接口成功率最优时间段-2023年OD统一考试(C卷)--Python3--开源

题目&#xff1a; 考察内容&#xff1a; for 时间窗口list(append, sum, sort) join 代码&#xff1a; """ 题目分析&#xff1a;最长时间段 且平均值小于等于minLost同时存在多个时间段&#xff0c;则输出多个&#xff0c;从大到小排序未找到返回 NULL 输入…

PostgreSQL 的实体化视图介绍

PostgreSQL 实体化视图提供一个强大的机制&#xff0c;通过预先计算并将查询结果集存储为物理表来提高查询性能。本教程将使用 DVD Rental Database 数据库作为演示例子&#xff0c;指导你在 PostgreSQL中创建实体化视图。 了解实体化视图 实体化视图是查询结果集的快照&…

T-Dongle-S3开发笔记——分区表

参考&#xff1a; ESP32之 ESP-IDF 教学&#xff08;十三&#xff09;—— 分区表_esp32分区表-CSDN博客 分区表 - ESP32 - — ESP-IDF 编程指南 latest 文档 (espressif.com) 分区表是 ESP32 划分内部 flash 闪存的清单&#xff0c;它将 flash 划分为多个不同功能的区域用于…

【前端素材】推荐优质后台管理系统inspina平台模板(附源码)

一、需求分析 后台管理系统是一个集成了多种功能模块的系统&#xff0c;通过这些模块的协同工作&#xff0c;实现对网站、应用程序或系统的全面管理和控制。管理员通过后台管理系统可以高效地管理用户、内容、数据、权限等方面的工作&#xff0c;确保系统的正常运行和安全性。…

MariaDB落幕和思考

听过MySQL的基本也都知道 MariaDB。MariaDB由MySQL的创始人主导开发&#xff0c;他早前曾以10亿美元的价格&#xff0c;将自己创建的公司MySQL AB卖给了SUN&#xff0c;此后&#xff0c;随着SUN被甲骨文收购&#xff0c;MySQL的所有权也落入Oracle的手中。传闻MySQL的创始人担心…

【火猫TV】DOTA2-喀山未来运动会:LGD 战队2-0击败Neon

在2月22号进行的俄罗斯喀山未来运动会DOTA2项目淘汰赛上,LGD 战队以2-0击败Neon战队晋级下一轮。双方对阵第二局,LGD对线期三路优,中期圣堂小鱼越打越肥,轻松拿下了比赛的胜利,以下是对决战报。转载:火猫TV资讯https://www.huomaotv.com/ LGD战队在天辉,阵容是小鱼、圣堂、玛尔…

使用ffmpeg实现视频片段截取并保持清晰度

1 原始视频信息 通过ffmpeg -i命令查看视频基本信息 ffmpeg -i input.mp4 ffmpeg version 6.1-essentials_build-www.gyan.dev Copyright (c) 2000-2023 the FFmpeg developersbuilt with gcc 12.2.0 (Rev10, Built by MSYS2 project)configuration: --enable-gpl --enable-ve…

Python Web开发记录 Day2:CSS

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 二、CSS1、CSS-初始入门①快速了解②CSS应用方式…

SpringCloud(14)之SpringCloud Consul

我们知道 Eureka 2.X 遇到困难停止开发了&#xff0c;所以我们需要寻找其他的替代技术替代Eureka&#xff0c;这一小 节我们就讲解一个新的组件Consul。 一、Consul介绍 Consul 是 HashiCorp 公司推出的开源工具&#xff0c;用于实现分布式系统的服务发现与配置。与其它分布式…

横空出世,Bright Data 低代码数据平台,即将颠覆你的认知!

大家好&#xff0c;我是锋哥&#xff0c;最近接了个监控平台的私活项目。由于监控公开的站点太多&#xff0c;在我无从下手迷茫之际&#xff0c;竟然无意中发现了这个宝藏级低代码数据平台 - 亮数据。功能强大&#xff0c;性能炸裂&#xff01; 传统开发 以前我们开发这种监控…

文件上传漏洞--Upload-labs--Pass10--双写绕过

一、什么是双写绕过 顾名思义&#xff0c;双写绕过就是双写文件后缀名来进行绕过&#xff0c;如&#xff1a;test.php 双写后为 test.pphphp。通常情况下双写绕过用于绕过源代码中的 str_ireplace()函数。 二、双写绕过原理 1、首先进行代码审计&#xff0c;源代码中有黑名单…

HTML5 Canvas 限定文本区域大小,文字自动换行,自动缩放

<!DOCTYPE html> <html> <body><h1>HTML5 Canvas 限定文本展示范围、自动计算缩放字体大小</h1><div id"tips">0</div> <div id"content">良田千顷不过一日三餐广厦万间只睡卧榻三尺良田千顷不过一日三餐…
最新文章