C/C++内存管理及内存泄漏详解

 

目录

C/C++内存分布

 C语言中动态内存管理方式:malloc/calloc/realloc/free

C++内存管理方式

new/delete操作内置类型

new和delete操作自定义类型

operator new与operator delete函数

 new和delete的实现原理

内置类型

自定义类型

内存泄漏

概念

内存泄漏分类



⭐C/C++内存分布

先来看看下面一段代码和相关问题

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1, 2, 3, 4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) * 4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
	free(ptr1);
	free(ptr3);
}

 这些问题就涉及到C/C++程序的内存分布问题

  1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。
  2. 堆区(heap):⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS(操作系统)回收。分配方式类似于链表。
  3. 数据段(静态区)(static):存放全局变量、静态数据。程序结束后由系统释放。
  4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码(可执行的代码/只读常量
    )。
  5. 内存映射段 是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
    创建共享共享内存,做进程间通信。
     

 ⭐C语言中动态内存管理方式:malloc/calloc/realloc/free

void Test()
{
	int* p1 = (int*)malloc(sizeof(int));
	free(p1);
	int* p2 = (int*)calloc(4, sizeof(int));
	int* p3 = (int*)realloc(p2, sizeof(int) * 10);
	free(p3);
}
  • malloc:这个函数向内存申请⼀块连续可用的空间,并返回指向这块空间的指针。参数 size 指的是申请的空间的大小
  • calloc:函数的功能是为 num 个大小为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
  • realloc:realloc 函数可以对动态开辟内存大小进行调整,返回值为调整之后的内存起始位置。
  • free:free函数用来释放动态开辟的内存。

⭐C++内存管理方式

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

⚡new/delete操作内置类型

void Test()
{
	// 动态申请一个int类型的空间
	int* ptr4 = new int;
	// 动态申请一个int类型的空间并初始化为10
	int* ptr5 = new int(10);
	// 动态申请10个int类型的空间
	int* ptr6 = new int[3];
	delete ptr4;
	delete ptr5;
	delete[] ptr6;
}

 new返回的是该数据类型的指针

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用
new[]和delete[],注意:匹配起来使用。

⚡new和delete操作自定义类型

new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
int main()
{
	// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
		A* p1 = (A*)malloc(sizeof(A));
	A* p2 = new A(1);
	free(p1);
	delete p2;
	// 内置类型是几乎是一样的
	int* p3 = (int*)malloc(sizeof(int)); // C
	int* p4 = new int;
	free(p3);
	delete p4;
	A* p5 = (A*)malloc(sizeof(A) * 10);
	A* p6 = new A[10];
	free(p5);
	delete[] p6;
	return 0;
}

 new和malloc时的对比:

delete和free的对比:

注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与
free不会。

我们在使用malloc时,常常需要进行如下的类型检查,防止内存开辟失败:

struct Node
{
	int val;
	Node* next;
};
//以创建一个链表的节点为例
Node* CreateNode(int val)
{
	Node* newnode = (Node*)malloc(sizeof(Node));
	if (newnode = NULL)
	{
		perror("malloc!");
		exit(-1);
	}
	newnode->val = val;
	newnode->next = NULL;

	return newnode;
}

 而在C++中,我们使用new进行开辟空间时,不需要进行这样的手动检查,new在开辟失败时,会抛异常。

⚡operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符operator new 和operator delete
系统提供的全局函数new在底层调用operator new全局函数来申请空间delete在底层通过
operator delete全局函数来释放空间。

operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行空间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}

operator delete: 该函数最终是通过free来释放空间的

void operator delete(void *pUserData)
{
_CrtMemBlockHeader * pHead;
RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
if (pUserData == NULL)
return;
_mlock(_HEAP_LOCK); /* block other threads */
__TRY
/* get a pointer to memory block header */
pHead = pHdr(pUserData);
/* verify block type */
_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
_free_dbg( pUserData, pHead->nBlockUse );
__FINALLY
_munlock(_HEAP_LOCK); /* release other threads */
__END_TRY_FINALLY
return;
}

/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
 

 ⚡new和delete的实现原理

⚡内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[] 和 delete[] 申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL。

⚡自定义类型

new的原理

  1. 1. 调用operator new函数申请空间
  2. 2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

⭐内存泄漏

⚡概念

什么是内存泄漏:内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内
存泄漏并不是指内存在物理上的消失,而是应用程序分配某段内存后,因为设计错误,失去了对
该段内存的控制,因而造成了内存的浪费。
内存泄漏的危害:长期运行的程序出现内存泄漏,影响很大,如操作系统、后台服务等等,出现
内存泄漏会导致响应越来越慢,最终卡死。

void MemoryLeaks()
{
	// 1.内存申请了忘记释放
	int* p1 = (int*)malloc(sizeof(int));
	int* p2 = new int;
	// 2.异常安全问题
	int* p3 = new int[10];
	Func(); // 这里Func函数抛异常导致 delete[] p3未执行,p3没被释放.
	delete[] p3;
}

⚡内存泄漏分类

C/C++程序中一般我们关心两种方面的内存泄漏:
堆内存泄漏(Heap leak)

  • 堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存,用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放,那么以后这部分空间将无法再被使用,就会产生Heap Leak。

系统资源泄漏

  • 指程序使用系统分配的资源,比方套接字、文件描述符、管道等没有使用对应的函数释放掉,导致系统资源的浪费,严重可导致系统效能减少,系统执行不稳定

____________________

⭐感谢你的阅读,希望本文能够对你有所帮助。如果你喜欢我的内容,记得点赞关注收藏我的博客,我会继续分享更多的内容。⭐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/423041.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

虚拟化介绍

虚拟化理论介绍 什么是虚拟化: 虚拟化&#xff08;Virtualization&#xff09;技术最早出现在 20 世纪 60 年代的 IBM 大型机系统。 在70年代的 System 370 系列中逐渐流行起来&#xff0c;这些机器通过一种叫虚拟机监控器&#xff08;Virtual Machine Monitor&#xff0c;V…

网络仿真(一)

网络仿真的意义 在网络规划和设计、网络设备研发、网络协议开发中&#xff0c;需要一种手段来反映和预测网络的性能 网络仿真可以提高网络规划设计的可靠性和准确性&#xff0c;明显降低网络投资风险&#xff0c;减少不必要的浪费 Ns-2 is a discrete event simulator Sched…

Page Object模式:为什么它是Web自动化测试的必备工具

为 UI 页面写测试用例时&#xff08;比如 web 页面&#xff0c;移动端页面&#xff09;&#xff0c;测试用例会存在大量元素和操作细节。当 UI 变化时&#xff0c;测试用例也要跟着变化&#xff0c; PageObject 很好的解决了这个问题。 使用 UI 自动化测试工具时&#xff08;包…

LabVIEW石油钻机提升系统数字孪生技术

LabVIEW石油钻机提升系统数字孪生技术 随着数字化、信息化、智能化的发展&#xff0c;石油钻采过程中的石油钻机数字化技术提升成为了提高钻井效率、降低生产成本的重要途径。基于中石油云平台提供的数据&#xff0c;采用数字孪生技术&#xff0c;对石油钻机提升系统进行数字化…

配置之道:深入研究Netty中的Option选项

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 配置之道&#xff1a;深入研究Netty中的Option选项 前言Option的基础概念ChannelOption与Bootstrap Option常见的ChannelOption类型ChannelConfig的使用Option的生命周期不同传输协议的Option 前言 在…

云时代【7】—— 存储卷

云时代【7】—— 存储卷 四、Docker&#xff08;四&#xff09;存储卷1. 存储卷&#xff08;1&#xff09;定义&#xff08;2&#xff09;分类 2. 相关指令&#xff08;1&#xff09;管理卷 VolumeA. 创建方式方式一&#xff1a;docker volume方式二&#xff1a;docker run -v …

美国教授查理曼说中国为何强大?中国人都不知道的民族特性

Title: 中国强大的秘密&#xff1a;查理曼教授的视角 在世界历史的长河中&#xff0c;中华民族以其辉煌灿烂的文化和举世瞩目的成就&#xff0c;书写了一篇篇传奇篇章。然而&#xff0c;对于中国人为什么能够取得如此卓越的成就&#xff0c;许多人却并不清楚。近日&#xff0c…

Linux搭建SFTP服务器

案例&#xff1a;搭建SFTP服务器 SFTP&#xff08;SSH文件传输协议&#xff09; SFTP&#xff08;SSH文件传输协议&#xff09;是一种安全的文件传输协议&#xff0c;用于在计算机之间传输文件。它基于SSH&#xff08;安全外壳协议&#xff09;的子系统&#xff0c;提供了加密的…

sqlserver保存微信Emoji表情

首先将数据库字段&#xff0c;设置类型为 nvarchar(200)一个emoji表情&#xff0c;占4字节就可以了&#xff0c;web前端展示不用改任何东西&#xff0c;直接提交数据保存&#xff1b;回显也会没有问题&#xff0c;C#代码不用做任何处理&#xff1b; 不哭不闹要睡觉&#x1f31…

若依框架使用mars3d的环境配置,地球构建

因项目需要&#xff0c;原本使用过的cesium依赖&#xff0c;现在想使用火星科技mars3d的一些功能&#xff0c;所以需要引入mars3d依赖&#xff0c;整个过程非常的坎坷&#xff0c;以至于我都不知道到底是哪些部分是标准的。。。先把我认为对的记录一下&#xff1a; 1.vue.conf…

【Java】SpringAOP —— AOP是什么? 代码实现了SpringAOP

文章目录 一、AOP是什么二、AOP的组成三、SpringAOP四、实现SpringAOP1.添加AOP框架支持2.定义切面切点3.定义相关通知 总结 一、AOP是什么 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程&#xff0c;它是⼀种思想&#xff0c;它是对某一类…

JVM 第四部分—垃圾回收相关概念 2

System.gc() 在默认情况下&#xff0c;通过System.gc()或者Runtime.getRuntime().gc()的调用&#xff0c;会显式触发Full GC&#xff0c;同时对老年代和新生代进行回收&#xff0c;尝试释放被丢弃对象占用的内存 然而System.gc()调用附带一个免责声明&#xff0c;无法保证对垃…

基于Camunda实现bpmn 2.0各种类型的任务

基于Camunda实现bpmn中各种类型任务 ​ Camunda Modeler -为流程设置器&#xff08;建模工具&#xff09;&#xff0c;用来构建我们的流程模型。Camunda Modeler流程绘图工具&#xff0c;支持三种协议类型流程文件分别为&#xff1a;BPMN、DMN、Form。 ​ Camunda Modeler下载…

【Python】进阶学习:pandas--isin()用法详解

【Python】进阶学习&#xff1a;pandas–isin()用法详解 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448; 希望得到您的订阅…

【java】20:枚举

枚举的二种实现方式 1) 自定义类实现枚举 2) 使用 enum 关键字实现枚举 自定义实现枚举&#xff1a; 1.不需要提供setXxx方法&#xff0c;因为枚举对象值通常为只读. 2.对枚举对象/属性使用final static共同修饰&#xff0c;实现底层优化. 3.枚举对象名通常使用全部大写&…

电子电气架构——汽车以太网诊断路由汇总

电子电气架构——汽车以太网诊断路由汇总 我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 人们会在生活中不断攻击你。他们的主要武器是向你灌输对自己的怀疑:你的价值、你的能力、你的潜力。他们往往会将…

江科大stm32学习笔记——【4-1】OLED

一.原理 1.调试方式 串口调试&#xff1a;通过串口通信&#xff0c;将调试信息发送到电脑端&#xff0c;电脑使用串口助手显示调试信息。 显示屏调试&#xff1a;直接将显示屏连接到单片机&#xff0c;将调试信息打印在显示屏上。 Keil调试模式&#xff1a;借助Keil软件的调…

深入sizeof与strlen

一、sizeof与strlen的对比 sizeofstrlensizeof是单目操作符strlen是库函数&#xff0c;使用需要包含头文件string.hsizeof计算操作数所占用的内存&#xff0c;单位是字节strlen是求字符串长度&#xff0c;统计的是\0之前字符的个数不关注内存中存放什么数据 关注内存总是否有\0…

关于 HTTP 协议,你了解多少

HTTP协议 FastAPI 是建立在 HTTP 协议之上&#xff0c;所以为了更好的掌握 FastAPI。我们需要先简单的了解一下 HTTP协议 简介 HTTP&#xff08;Hypertext Transfer Protocol&#xff09;遵循经典的客户端-服务器模型&#xff0c;客户端打开连接以发出请求&#xff0c;然后等…

Linux内核队列queue.h

文章目录 一、简介二、SLIST单向无尾链表2.1 介绍2.2 操作2.3 例子 三、STAILQ单向有尾链表四、LIST双向无尾链表五、TAILQ双向有尾链表六、CIRCLEQ循环链表七、queue源码参考 一、简介 queue.h是一个非常经典的文件&#xff0c;定义了一系列宏的操作&#xff0c;它定义了一系…
最新文章