【MATLAB第97期】基于MATLAB的贝叶斯Bayes算法优化BiGRU双向门控循环单元的多输入单输出回归预测模型,含GRU与BiGRU多层结构优化选择

【MATLAB第97期】基于MATLAB的贝叶斯Bayes算法优化BiGRU双向门控循环单元的多输入单输出回归预测模型,含GRU与BiGRU结构层数优化

前言

前面在【MATLAB第10期】讲解了基于贝叶斯Bayes算法优化LSTM长短期记忆网络的多输入单输出回归预测模型。

本次模型难点包括:
1、BiGRU模型代码的编制
2、多层BiGRU模型代码的编制
3、BO-BiGRU模型代码的编制

数据

7输入1输出

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim =  7;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 7)';
T_train = res(temp(1: 700), 8)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 7)';
T_test = res(temp(701: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, 7, 1, 1, M));
P_test  =  double(reshape(P_test , 7, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

%%  创建模型
inputSize = 7;      % 输入特征个数
numResponses = 1;     % 输出特征个数
NumOfUnits = 40;  % 隐含层神经元个数
layers = layerGraph();

%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MiniBatchSize', 50, ...               % 批大小
    'MaxEpochs', 100, ...                  % 最大迭代次数
    'InitialLearnRate', 1e-2, ...          % 初始学习率为
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.5, ...        % 学习率下降因子
    'LearnRateDropPeriod', 50, ...         % 经过 500 次训练后 学习率为 0.01 * 0.5
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

一、单层BiGRU

参考链接:

BIGRU(Bidirectional Gated Recurrent Unit)是一种基于双向门控循环单元(GRU)的多变量时间序列预测方法。它结合了双向模型和门控机制,能够有效地捕捉时间序列数据中的时序关系和多变量之间的相互影响。

GRU是一种循环神经网络(RNN)的变体,相比于传统的循环神经网络(如LSTM),GRU具有更少的参数和计算复杂度。它通过引入门控单元来控制信息的流动,从而在处理长期依赖关系时具有更好的性能。

BIGRU模型由两个方向的GRU网络组成,一个网络从前向后处理时间序列数据,另一个网络从后向前处理时间序列数据。这种双向结构可以同时捕捉到过去和未来的信息,从而更全面地建模时间序列数据中的时序关系。

在BIGRU模型中,每个GRU单元都有更新门和重置门来控制信息的流动。更新门决定了当前时刻的输入是否对当前状态进行更新,而重置门决定了如何将过去的状态与当前输入结合起来。通过这些门控机制,BIGRU模型可以自适应地学习时间序列数据中的长期依赖关系和多变量之间的相互影响。

在这里插入图片描述
在这里插入图片描述
训练集数据的MAPE为:0.015984
测试集数据的MAPE为:0.037648
训练集数据的RMSE为:0.052827
测试集数据的RMSE为:0.11232
训练集数据的R2为:0.99808
测试集数据的R2为:0.97666
训练集数据的MAE为:0.032269
测试集数据的MAE为:0.088781
训练集数据的MBE为:-0.0040228
测试集数据的MBE为:0.057725

二、多层BiGRU

1.双层

在这里插入图片描述
在这里插入图片描述
训练集数据的MAPE为:0.025075
测试集数据的MAPE为:0.060946
训练集数据的RMSE为:0.077447
测试集数据的RMSE为:0.17569
训练集数据的R2为:0.99587
测试集数据的R2为:0.94288
训练集数据的MAE为:0.047427
测试集数据的MAE为:0.14756
训练集数据的MBE为:0.041614
测试集数据的MBE为:0.13522

2.三层

在这里插入图片描述
训练集数据的MAPE为:0.019441
测试集数据的MAPE为:0.045008
训练集数据的RMSE为:0.057658
测试集数据的RMSE为:0.13099
训练集数据的R2为:0.99771
测试集数据的R2为:0.96825
训练集数据的MAE为:0.036483
测试集数据的MAE为:0.10681
训练集数据的MBE为:0.0048439
测试集数据的MBE为:0.079081

3.四层

在这里插入图片描述
训练集数据的MAPE为:0.023143
测试集数据的MAPE为:0.034958
训练集数据的RMSE为:0.074313
测试集数据的RMSE为:0.10532
训练集数据的R2为:0.9962
测试集数据的R2为:0.97947
训练集数据的MAE为:0.047467
测试集数据的MAE为:0.081923
训练集数据的MBE为:-0.026566
测试集数据的MBE为:0.028198

三、BO-BiGRU(含多层BiGRU)

clc; clear; close all;
%% -------------- 初始化变量 ------ ----------

%opt.Delays = 1:10;%数据滞后30=滑动窗口
%opt.dataPreprocessMode为数据预处理,'None'代表无处理,'Data Standardization'代表标准化处理,
%'Data Normalization'代表归一化处理
opt.dataPreprocessMode  = 'Data Normalization'; %三种数据处理方式 'None' 'Data Standardization' 'Data Normalization'
opt.learningMethod      = 'GRU';%选择GRU作为训练模型
opt.trPercentage        = 0.76; % 将数据划分为测试和训练数据集,0.76代表训练集比例                 

%----通用深度学习参数(GRU和CNN通用参数)  
opt.maxEpochs     = 100;   %400                  % 深度学习算法中最大训练次数。
opt.miniBatchSize = 50;                        % 深度学习算法中的样本最小批处理数量大小。
opt.executionEnvironment = 'cpu';                % 运行环境 'cpu' 'gpu' 'auto'
opt.LR                   = 'adam';               %GRU学习函数 'sgdm' 'rmsprop' 'adam'
opt.trainingProgress     = 'none';     %是否运行训练图 'training-progress' 'none'

% ------------- BIGRU参数
opt.isUseBiGRULayer  = true;                   % 如果为true,则为双向 GRU,如果为false,则转为单向GRU
opt.isUseDropoutLayer = true;                    % dropout 层避免过拟合
opt.DropoutValue      = 0.5;                       % dropout 层概率为0.5

% ------------ 优化参数
opt.optimVars = [
    optimizableVariable('NumOfLayer',[1 4],'Type','integer') %优化GRU隐含层层数(1-4) ,层数数据类型为整数
    optimizableVariable('NumOfUnits',[20 200],'Type','integer')%优化GRU隐含层神经元(50-200) ,数据类型为整数
    optimizableVariable('isUseBiGRULayer',[1 2],'Type','integer')%优化GRU结构,1代表BiGRU,2代表GRU, ,数据类型为整数
    optimizableVariable('InitialLearnRate',[1e-2 1],'Transform','log')%优化GRU初始学习率(0.01-1) ,数据类型为浮点型
    optimizableVariable('L2Regularization',[1e-10 1e-2],'Transform','log')];%优化GRU正则化L2系数(1e-10-1e-2) ,数据类型为浮点型

opt.isUseOptimizer         = true;%是否选择贝叶斯优化 
opt.MaxOptimizationTime    = 14*60*20;%优化运行的最大时间14*60*60
opt.MaxItrationNumber      = 30;%优化运行的最大迭代次数60
opt.isDispOptimizationLog  = true;%是否展示优化过程日志

opt.isSaveOptimizedValue       = false;        % 是否将所有优化输出保存在 mat 文件中
opt.isSaveBestOptimizedValue   = true;         %  是否将最佳优化输出保存为 mat 文件


%% --------------- 加载数据
data = loadData(opt);
if ~data.isDataRead
    return;
end

%% --------------- 准备数据
[opt,data] = PrepareData(opt,data);

%% --------------- 使用贝叶斯优化找到最佳 GRU 参数
[opt,data] = OptimizeGRU(opt,data);

%% --------------- 评估数据
[opt,data] = EvaluationData(opt,data);

save result_BO-BiGRU

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试集R2: 0.98962
训练集R2:0.99758

运行过程结果:
达到 MaxObjectiveEvaluations 30。
函数计算总次数: 30
总历时: 945.2992 秒。
总目标函数计算时间: 905.6441

观测到的最佳可行点:
    NumOfLayer    NumOfUnits    isUseBiGRULayer    InitialLearnRate    L2Regularization


       1.00         199.00           2.00                0.01                0.00      

观测到的目标函数值 = 0.0017557
估计的目标函数值 = 0.0015089
函数计算时间 = 21.0219

估计的最佳可行点(根据模型):
    NumOfLayer    NumOfUnits    isUseBiGRULayer    InitialLearnRate    L2Regularization

       1.00         199.00           2.00                0.01                0.00      

估计的目标函数值 = 0.0015089
估计的函数计算时间 = 21.0541

在这里插入图片描述

四、结论

针对本案例数据,1-4层BiGRU回归模型测试时, 1层结构与4层结构拟合结果较好,但因4层结构运行速度慢,结构复杂,加上数据量少,所以在本案例中不太适用。

贝叶斯优化BiGRU模型中,30次迭代后最佳的结构是单层GRU结构,但与单层BiGRU结果相差不大,具有一定的可行性。

再严谨一点儿,需要把30次迭代最优结构结果进行分析,判断BiGRU相对于GRU的优势或者劣势,至少从运行结果可知,BiGRU下限很低,所以不推荐使用默认参数,而需要搭配进化算法进行使用。GRU结构相对较为稳定,但内容比较单一,相比LSTM没有明显优势。

以上,若用BiGRU,使用一层结构的就足够了(结论不严谨,仅针对本次案例)。

五、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“96期”以及相应指令,即可获取对应下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/429744.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ps:图案图章工具

图案图章工具 Pattern Stamp Tool可将各种预设图案或自定义的图案,通过画笔涂抹的方式填充到图像中。 快捷键:S 图案图章工具提供了一种快速、灵活的方式来为图像局部添加纹理和装饰。 这个工具类似于仿制图章工具,但区别在于,它使…

初阶数据结构:二叉树(补充扩展)

目录 1. 堆排序1.1补充:建堆的时间复杂度1.2 堆排序:升序与降序 2. TopK问题3. 二叉树的链式结构及其遍历方式3.1 二叉树的链式结构3.2 二叉树的前序遍历2.2 二叉树的中序遍历2.3 后序遍历2.4 层序遍历 4. 二叉树OJ练习4.1 单值二叉树4.2 判断两棵二叉树…

three.js如何实现简易3D机房?(一)基础准备-上

目录 一、tips 二、功能说明 1.模型初始化 2.功能交互 三、初始化准备 1.目录结构 2.创建三要素 3.创建轨道控制器 4.初始化灯光 5.适配 6.循环渲染 一、tips 1.three.js入门的相关基础性知识就不在此过多赘述了,可以自行提前了解 three.js docs&…

PyTorch深度学习实战(38)——StyleGAN详解与实现

PyTorch深度学习实战(38)——StyleGAN详解与实现 0. 前言1. StyleGAN1.1 模型介绍1.2 模型策略分析 2. 实现 StyleGAN2.1 生成图像2.2 风格迁移 小结系列链接 0. 前言 StyleGAN (Style-Generative Adversarial Networks) 是生成对抗网络 (Generative Ad…

基于Docker部署本地ChatGPT环境

基于Docker部署本地ChatGPT环境 一、拉取镜像 docker pull pengzhile/pandora二、运行镜像 docker run -e PANDORA_CLOUDcloud -e PANDORA_SERVER0.0.0.0:8899 -p 8899:8899 -d pengzhile/pandora三、查看容器是否启动成功 docker ps四、登录 http://IP:8899 这里有两种方…

原始手写helloworld并打jar包允许

1.创建文件夹test统一在其中操作 2.创建hello.java文件 【hello.txt改属性为hello.java】并在里面添加代码 public class hello {public static void main(String[] args) {System.out.println("hello world");} } 注意:类名与文件名一致 然后运行…

使用AI创建令人惊叹的3D模型

老子云平台《《《《《 使内容创作者能够在一分钟内毫不费力地将文本和图像转换为引人入胜的 3D 资产。 文本转 3D 我们的文本转 3D 工具使创作者(包括那些没有 3D 经验的创作者)能够使用文本输入在短短一分钟内生成 3D 模型。 一句话生成3D模型 老子…

FPGA-VGA成像原理与时序

什么是VGA: VGA, Video Graphics Array。即视频图形阵列,具有分辨率高、显示速率快、颜色丰富等优点。VGA接口不但是CRT显示设备的标准接口,同样也是LCD液晶显示设备的标准接口,具有广泛的应用范围。在FGPA中,常广泛用于图像处理等领域。 VGA 显示器成像原理 在 VGA 标准刚兴…

Material UI 5 学习02-其它按钮组件

Material UI 5 学习02-其它按钮组件 一、IconButton按钮二、 ButtonGroup按钮组1、最基本的实例2、垂直按钮组 一、IconButton按钮 图标按钮通常适用于切换按钮&#xff0c;允许选择或选择单个选项 取消选择&#xff0c;例如在项目中添加或删除星号。 <IconButton aria-lab…

docker pull 拉取失败,设置docker国内镜像

遇到的问题 最近在拉取nginx时&#xff0c;显示如下错误&#xff1a;Error response from daemon: Get “https://registry-1.docker.io/v2/”: net/http: request canceled (Client.Timeout exceeded while awaiting headers)。 这个的问题是拉取镜像超时&#xff0c;通过检索…

RISC-V特权架构 - 机器模式下的异常处理

RISC-V特权架构 - 机器模式下的异常处理 1 进入异常1.1 从mtvec 定义的PC 地址开始执行1.2 更新CSR 寄存器mcause1.3 更新CSR 寄存器mepc1.4 更新CSR 寄存器mtval1.5 更新CSR 寄存器mstatus 2 退出异常2.1 从mepc 定义的PC 地址开始执行2.2 更新CSR 寄存器mstatus 3 异常服务程…

Docker Protainer可视化平台,忘记登录密码,重置密码。

由于好久没有登录portainer系统&#xff0c;导致忘记了登录密码&#xff0c;试了好多常用的密码都不对&#xff0c;无奈只能重置密码。 一、停止protainer 容器 查看容器ID和COMMAND 用于停止容器 docker ps -a停止容器 docker stop portainer二、查找volume data 宿主机所在…

脉冲电阻器负载、功率和电压降额,选型分析

本文讨论了关键的电阻脉冲负载、功率和电压降额参数&#xff0c;这些参数对于正确选择指南和可靠运行这些无源元件非常重要。 EAK脉冲负载 在许多应用中&#xff0c;电阻器将承受脉冲负载。我们区分周期性/重复性负载和脉冲序列;一方面&#xff0c;脉冲以一定频率重复&#xff…

Spring中最常用的11个扩展点

前言 我们一说到spring&#xff0c;可能第一个想到的是 IOC&#xff08;控制反转&#xff09; 和 AOP&#xff08;面向切面编程&#xff09;。 没错&#xff0c;它们是spring的基石&#xff0c;得益于它们的优秀设计&#xff0c;使得spring能够从众多优秀框架中脱颖而出。 除…

Thingsboard本地源码部署教程

本章将介绍ThingsBoard的本地环境搭建&#xff0c;以及源码的编译安装。本机环境&#xff1a;jdk11、maven 3.6.2、node v12.18.2、idea 2023.1、redis 6.2 环境安装 开发环境要求&#xff1a; Jdk 11 版本 &#xff1b;Postgresql 9 以上&#xff1b;Maven 3.6 以上&#xf…

PaddleOCR CPU 文本文字识别 docker部署

需求&#xff1a; 需要把所有滑块图片的数据文字提取出来 启动服务 mkdir paddle cd paddle docker run -itd --name ppocr -v $PWD:/paddle --networkhost -it registry.baidubce.com/paddlepaddle/paddle:2.1.3-gpu-cuda10.2-cudnn7 /bin/bash docker exec -it ppocr bash …

深入理解Tomcat

目录&#xff1a; TomcatTomcat简介如何下载tomcatTomcat工作原理Tomcat架构图Tomcat组件Server组件Service组件Connector组件Engine组件Host组件Context组件 配置虚拟主机(Host)配置Context Tomcat Tomcat简介 Tomcat服务器是Apache的一个开源免费的Web容器。它实现了JavaEE…

mysql学习笔记7——数据库查询深入

.sql文件 在实际使用数据库时&#xff0c;常常要对数据库文件进行备份&#xff0c;以便在数据库遭到入侵或者非人为因素导致损坏后&#xff0c;快速恢复数据 .sql文件便提供了这种功能&#xff0c;首先.sql文件是由一串串mysql指令组成的&#xff0c;我们插入.sql文件实际相当…

5G工业智能网关保障煤矿安全生产

随着物联网技术发展与煤矿需求的持续激增&#xff0c;矿山矿井的分布范围广泛、户外环境恶劣等管理问题急需解决&#xff0c;而物联网网关工业级设计能够无惧恶劣环境干扰&#xff0c;轻松解决户外网络部署问题。 工业网关通过采集矿井内的各类传感器数据对矿井进行远程监控&a…

[C#]winform部署yolov9的onnx模型

C# WinForms 部署 YOLOv9 ONNX 模型简介 在当今的计算机视觉领域&#xff0c;目标检测是不可或缺的一项技术。YOLO&#xff08;You Only Look Once&#xff09;系列模型以其高效和准确的特点受到了广泛关注。随着YOLOv9的发布&#xff0c;其性能进一步提升&#xff0c;为实际应…
最新文章