Linux网络隧道协议IPIP认知(基于Linux network namespace 的 IPIP 隧道通信)

写在前面


  • 博文内容为 Linux 隧道通信 IPIP认知
  • 内容涉及:ipip 介绍,一个 ipip 通信 Demo 以及数据帧流转分析
  • 理解不足小伙伴帮忙指正

某些人和事,哪怕没有缘分,是路边的风景,可是只要看一眼,依然会让人觉得很美好。


ipip 是什么?

在 讲 ipip 之前,必须要提 tun 设备,我们用一个 例子来说明

想象一下,你和你的知己,分别住在不同的城市,你想与他进行书信往来。现在,你需要一种方式来将信件从你的城市发送到他们所在的城市。

IPIP 就像是一种邮寄方式,它允许你在信封外面再封装一层信封,将原始的信件放在里面。然后,你可以通过邮政系统将这个封装过的信封发送给你的朋友。在他们收到信封后,他们需要打开外层的信封才能看到里面的原始信件。这样,你就通过IPIP创建了一个逻辑隧道,将信件从一个城市传输到另一个城市。

TUN就像是一种邮局,它提供了一个虚拟的邮局接口。你可以将你要发送的信件放在TUN接口中,然后通过邮局的系统将信件发送给你的朋友。当你的朋友的邮局接收到信件后,它会将信件放在他们的TUN接口中供他们查看。实际上,TUN是一种虚拟的邮局接口,它模拟了真实的邮局功能,使你能够像操作真实的邮局一样处理和转发信件。

通过结合IPIP和TUN技术,你可以将信件封装在一个外层的信封中(使用IPIP),然后通过邮局系统(使用TUN)将信件发送给你的朋友。这样,你就实现了点对点的虚拟邮寄服务,使你能够与朋友进行书信往来。

这么做的好处:

  • 虚拟环境的连接:类似于邮寄服务可以将信件送达到不同的收件人,点对点虚拟设备可以在虚拟环境中连接不同的虚拟机、容器或者虚拟实例。这样可以实现虚拟环境之间的互通和通信,提升整体系统的协作和效率。
  • 分隔和隔离网络:点对点虚拟设备可以将不同的网络环境分隔开来,就像邮寄服务可以将不同的信件分开处理一样。这样可以确保不同网络之间的通信不会相互干扰,提高网络的可管理性和稳定性。
  • 隐私和安全性:使用点对点虚拟设备就像在信件中添加了一层额外的封封,这样可以增强隐私和安全性。类似地,点对点虚拟设备可以通过添加加密和认证机制来保护数据的机密性和完整性,确保只有授权的接收方能够访问和解封数据。

tun表示虚拟的点对点设备,工作在L3,之所以叫这个名字,是因为tun经常被用来做隧道通信(tunnel)

通过命令ip tunnel help查看IP隧道的相关操作。

liruilonger@cloudshell:~$ ip  tunnel help
Usage: ip tunnel { add | change | del | show | prl | 6rd } [ NAME ]
         [ mode { ipip | gre | sit | isatap | vti } ] [ remote ADDR ] [ local ADDR ]
         [ [i|o]seq ] [ [i|o]key KEY ] [ [i|o]csum ]
         [ prl-default ADDR ] [ prl-nodefault ADDR ] [ prl-delete ADDR ]
         [ 6rd-prefix ADDR ] [ 6rd-relay_prefix ADDR ] [ 6rd-reset ]
         [ ttl TTL ] [ tos TOS ] [ [no]pmtudisc ] [ dev PHYS_DEV ]

Where:  NAME := STRING
        ADDR := { IP_ADDRESS | any }
        TOS  := { STRING | 00..ff | inherit | inherit/STRING | inherit/00..ff }
        TTL  := { 1..255 | inherit }
        KEY  := { DOTTED_QUAD | NUMBER }
liruilonger@cloudshell:~$ 

Linux原生支持下列5种L3隧道:

  • ipip:即IPv4 in IPv4, 在IPv4报文的基础上封装一个IPv4报文
  • GRE:即通用路由封装(Generic Routing Encapsulation),定义了在任意一种网络层协议上封装其他任意一种网络层协议的机制,适用于IPv4和IPv6
  • sit:和ipip类似,不同的是sit用IPv4报文封装IPv6报文,即IPv6 over IPv4
  • ISATAP:即站内自动隧道寻址协议(Intra-Site Automatic Tunnel Addressing Protocol),与sit类似,也用于IPv6的隧道封装;
  • VTI:即虚拟隧道接口(Virtual Tunnel Interface),是思科提出的一种IPSec隧道技术。下面我们以ipip为例,介绍Linux隧道通信的基本原理。

注:Linux L3隧道底层实现原理都基于tun设备

ipip隧道通信 Demo

应为只有一台机器,所以这里我们通过 Linux 上的两个 network namespace 来模拟两个机器节点,每个 network namespce 是一个独立的网络栈

要使用ipip隧道,首先需要内核模块ipip.ko的支持。

通过lsmod|grep ipip查看内核是否加载,若没有则用modprobe ipip加载,正常加载应该显示

liruilonger@cloudshell:~$ lsmod | grep ipip
liruilonger@cloudshell:~$ sudo modprobe ipip
liruilonger@cloudshell:~$ modprobe ipip
liruilonger@cloudshell:~$ lsmod | grep ipip
ipip                   16384  0
ip_tunnel              28672  1 ipip
tunnel4                16384  1 ipip

加载ipip内核模块后,就可以创建隧道了。方法是先创建一个tun设备,然后将该tun设备绑定为一个ipip隧道。ipip隧道网络拓扑如图

这里我们用两个 Linux network namespace 来模拟 ,创建两个网络命名空间,同时配置两个 veth pair,一端放到命名空间

liruilonger@cloudshell:~$ sudo ip netns add ns1
liruilonger@cloudshell:~$ sudo ip netns add ns2
liruilonger@cloudshell:~$ sudo ip link add v1 netns ns1  type veth peer name v1-P
liruilonger@cloudshell:~$ sudo ip link add v2 netns ns2  type veth peer name v2-P

确认创建的 veth pair

liruilonger@cloudshell:~$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default 
    link/ether 0a:10:50:88:eb:09 brd ff:ff:ff:ff:ff:ff link-netnsid 0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default 
    link/ether 02:42:f9:2d:29:3e brd ff:ff:ff:ff:ff:ff
4: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
5: v1-P@if3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether 76:81:b0:33:e4:2b brd ff:ff:ff:ff:ff:ff link-netns ns1
6: v2-P@if3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether aa:a6:ac:15:b1:64 brd ff:ff:ff:ff:ff:ff link-netns ns2

另一端放到 根网络命名空间,同时两个Veth-pair 配置不同网段IP启动。

liruilonger@cloudshell:~$ sudo ip addr add 10.10.10.1/24 dev v1-P
liruilonger@cloudshell:~$ sudo ip link set v1-P up
liruilonger@cloudshell:~$ sudo ip addr add 10.10.20.1/24 dev v2-P
liruilonger@cloudshell:~$ sudo ip link set v2-P up

命名空间一端的同样配置IP 并启用

liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip addr add 10.10.10.2/24 dev v1
liruilonger@cloudshell:~$ sudo ip netns exec ns2 ip addr add 10.10.20.2/24 dev v2
liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip link set v1 up
liruilonger@cloudshell:~$ sudo ip netns exec ns2 ip link set v2 up

确定设备在线

liruilonger@cloudshell:~$ ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default 
    link/ether 0a:10:50:88:eb:09 brd ff:ff:ff:ff:ff:ff link-netnsid 0
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group default 
    link/ether 02:42:f9:2d:29:3e brd ff:ff:ff:ff:ff:ff
4: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
5: v1-P@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether 76:81:b0:33:e4:2b brd ff:ff:ff:ff:ff:ff link-netns ns1
6: v2-P@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether aa:a6:ac:15:b1:64 brd ff:ff:ff:ff:ff:ff link-netns ns2
liruilonger@cloudshell:~$

调整内核参数,开启 ipv4 转发

liruilonger@cloudshell:~$ cat /proc/sys/net/ipv4/ip_forward
1

这个时候,Linux 网络命名空间中的 v1 和 v2 veth 任然不通,应为是在两个不同的网段。

liruilonger@cloudshell:~$ sudo ip netns exec ns1 route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.10.10.0      0.0.0.0         255.255.255.0   U     0      0        0 v1

查看路由信息,没有通向 10.10.20.0/24网段的路由

所以我们在 ns1 里面配置一条路由,通向 10.10.20.0 的访问路由到 10.10.10.1 网关,实际上是 veth pair 的另一端。

liruilonger@cloudshell:~$ sudo ip netns exec ns1 route add -net 10.10.20.0 netmask 255.255.255.0 gw 10.10.10.1

再查看路由表

liruilonger@cloudshell:~$ sudo ip netns exec  ns1 route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.10.10.0      0.0.0.0         255.255.255.0   U     0      0        0 v1
10.10.20.0      10.10.10.1      255.255.255.0   UG    0      0        0 v1
liruilonger@cloudshell:~$ 

同理,也给ns2配上通往10.10.10.0/24网段的路由。

liruilonger@cloudshell:~$ sudo ip netns exec ns2 route add -net 10.10.10.0 netmask 255.255.255.0 gw 10.10.20.1
liruilonger@cloudshell:~$ sudo ip netns exec  ns2 route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.10.10.0      10.10.20.1      255.255.255.0   UG    0      0        0 v2
10.10.20.0      0.0.0.0         255.255.255.0   U     0      0        0 v2
liruilonger@cloudshell:~$ 

这时候我们在 ns1 和 ns2 之间做ping 测试,正常通信

liruilonger@cloudshell:~$ sudo ip netns exec ns1 ping -c 3  10.10.20.2                                                
PING 10.10.20.2 (10.10.20.2) 56(84) bytes of data.
64 bytes from 10.10.20.2: icmp_seq=1 ttl=63 time=0.092 ms
64 bytes from 10.10.20.2: icmp_seq=2 ttl=63 time=0.057 ms
64 bytes from 10.10.20.2: icmp_seq=3 ttl=63 time=0.053 ms

--- 10.10.20.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2036ms
rtt min/avg/max/mdev = 0.053/0.067/0.092/0.017 ms
liruilonger@cloudshell:~$ sudo ip netns exec ns2 ping -c 3  10.10.10.2
PING 10.10.10.2 (10.10.10.2) 56(84) bytes of data.
64 bytes from 10.10.10.2: icmp_seq=1 ttl=63 time=0.042 ms
64 bytes from 10.10.10.2: icmp_seq=2 ttl=63 time=0.052 ms
64 bytes from 10.10.10.2: icmp_seq=3 ttl=63 time=0.049 ms

--- 10.10.10.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2066ms
rtt min/avg/max/mdev = 0.042/0.047/0.052/0.004 ms
liruilonger@cloudshell:~$ 

v1 和 v2 可以正常通信,即我们模拟了两个不在同一网段的 Linux 机器

创建tun设备,并设置为ipip隧道

  • 在 ns1 上面创建 tun1 设备:ip tunnel add tunl
  • 设置隧道模式为ipip:mode ipip
  • 设置隧道端点,用remotelocal表示隧道外层IP: remote 10.10.20.2 local 10.10.10.2
  • 隧道内层IP配置: ip addr add 10.10.100.10 peer 10.10.200.10 dev tunl
liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip tunnel add tunl mode ipip remote 10.10.20.2 local 10.10.10.2
liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip link set tunl up
liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip addr add 10.10.100.10 peer 10.10.200.10 dev tunl
liruilonger@cloudshell:~$ 

原始的IP 头

  • src: 10.10.100.10
  • dst: 10.10.200.10

封装后的IP头

  • src: 10.10.10.2 | src: 10.10.100.10
  • dst: 10.10.20.2 | dst: 10.10.200.10

同样需要在 ns2 上做相同的配置

liruilonger@cloudshell:~$ sudo ip  netns exec ns2 ip tunnel add tunr mode ipip remote 10.10.10.2 local 10.10.20.2
liruilonger@cloudshell:~$ sudo ip netns exec ns2 ip link set tunr up
liruilonger@cloudshell:~$ sudo ip netns exec ns2 ip addr add 10.10.200.10 peer 10.10.100.10 dev tunr
liruilonger@cloudshell:~$ 

到这里 两个 tun 设备的 隧道就建立成功了,我们可以在其中一个命名空间对另一个命名空间的 tun 设备发起 ping 测试

liruilonger@cloudshell:~$ sudo ip netns exec ns1 ping 10.10.200.10 -c 3
PING 10.10.200.10 (10.10.200.10) 56(84) bytes of data.
64 bytes from 10.10.200.10: icmp_seq=1 ttl=64 time=0.091 ms
64 bytes from 10.10.200.10: icmp_seq=2 ttl=64 time=0.062 ms
64 bytes from 10.10.200.10: icmp_seq=3 ttl=64 time=0.067 ms

--- 10.10.200.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2082ms
rtt min/avg/max/mdev = 0.062/0.073/0.091/0.012 ms
liruilonger@cloudshell:~$ 

在看一各个命名空间对应的 链接

liruilonger@cloudshell:~$ sudo ip netns exec ns1 ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
3: v1@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether 72:de:67:0b:28:e1 brd ff:ff:ff:ff:ff:ff link-netnsid 0
4: tunl@NONE: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1480 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/ipip 10.10.10.2 peer 10.10.20.2
liruilonger@cloudshell:~$

两个命名空间除了 veth-pair 对应的 veth 虚拟设备,各有个一个 tun 设备,link/ipip 中的内容表示封装后的包的两端地址,即外层IP。

liruilonger@cloudshell:~$ sudo ip netns exec ns2 ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
3: v2@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default qlen 1000
    link/ether f2:dd:3c:7d:eb:50 brd ff:ff:ff:ff:ff:ff link-netnsid 0
4: tunr@NONE: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1480 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
    link/ipip 10.10.20.2 peer 10.10.10.2
liruilonger@cloudshell:~$

ipip隧道通信数据帧流转分析

分析实验过程,ping 命令构建一个ICMP请求,ICMP报文封装在IP报文中,源和目的IP地址分别是10.10.100.10和10.10.200.10

由于 tunl 和 tunr 不在同一个网段,所以需要查看路由表,通过ip tunnel命令建立ipip隧道后,会自动生成一条路由

liruilonger@cloudshell:~$ sudo ip netns exec ns1 route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.10.10.0      0.0.0.0         255.255.255.0   U     0      0        0 v1
10.10.20.0      10.10.10.1      255.255.255.0   UG    0      0        0 v1
10.10.200.10    0.0.0.0         255.255.255.255 UH    0      0        0 tunl
liruilonger@cloudshell:~$ sudo ip netns exec ns2 route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
10.10.10.0      10.10.20.1      255.255.255.0   UG    0      0        0 v2
10.10.20.0      0.0.0.0         255.255.255.0   U     0      0        0 v2
10.10.100.10    0.0.0.0         255.255.255.255 UH    0      0        0 tunr

可以看到,去往目的地 10.10.x00.10 的报文直接从 tunl\tunr 出去了。这是因为上面配置了内层IP,生成对应的路由信息

配置了 ipip 隧道端点,数据包从 tunl/tunr 出去后直接到达外层IP 对应的端点,也就是当前 network namespace 内部的 veth(v1,v2),同时会封装一层新的IP头, 即外层IP 对应的端点

之后就是 v1 和 v2 之间的通信,利用 veth pair 的特性,v1直通v1-P,Linux打开了ip_forward,它相当于一台路由器,10.10.10.0和10.10.20.0 是两条直连路由,所以直接查路由表转发,从 v1-P 转到 v2-P上,这个时候在利用 veth pair 特性,到直接到 v2

liruilonger@cloudshell:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
2: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default 
    link/ether 0a:10:50:88:eb:09 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 10.88.0.3/16 brd 10.88.255.255 scope global eth0
       valid_lft forever preferred_lft forever
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default 
    link/ether 02:42:f9:2d:29:3e brd ff:ff:ff:ff:ff:ff
    inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
       valid_lft forever preferred_lft forever
4: tunl0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1000
    link/ipip 0.0.0.0 brd 0.0.0.0
5: v1-P@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 76:81:b0:33:e4:2b brd ff:ff:ff:ff:ff:ff link-netns ns1
    inet 10.10.10.1/24 scope global v1-P
       valid_lft forever preferred_lft forever
6: v2-P@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether aa:a6:ac:15:b1:64 brd ff:ff:ff:ff:ff:ff link-netns ns2
    inet 10.10.20.1/24 scope global v2-P
       valid_lft forever preferred_lft forever
liruilonger@cloudshell:~$ 

到达v2 之后,内核解封装数据包,发现内层IP报文的目的IP地址是10.10.200.10,根据路由,这正是自己配置的ipip隧道tunr地址,于是将报文交给tunr设备。至此,tunl的ping请求包成功到达tunr。

ICMP 报文的传输特性,有去必有回,所以ns2上会构造ICMP响应报文,并根据以上相同步骤封装和解封装数据包,直至到达 tun1,整个ping过程完成。

liruilonger@cloudshell:~$ sudo ip netns exec ns2 ping 10.10.100.10 -c 3
PING 10.10.100.10 (10.10.100.10) 56(84) bytes of data.
64 bytes from 10.10.100.10: icmp_seq=1 ttl=64 time=0.063 ms
64 bytes from 10.10.100.10: icmp_seq=2 ttl=64 time=0.065 ms
64 bytes from 10.10.100.10: icmp_seq=3 ttl=64 time=0.062 ms

--- 10.10.100.10 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2044ms
rtt min/avg/max/mdev = 0.062/0.063/0.065/0.001 ms
liruilonger@cloudshell:~$ 

Linux内核原生支持5种隧道协议,它们的底层实现都采用tun设备。

博文部分内容参考

© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 😃


《 Kubernetes 网络权威指南:基础、原理与实践》


© 2018-2024 liruilonger@gmail.com, All rights reserved. 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/432148.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

空间直角坐标系、大地坐标系、平面坐标系介绍

空间直角坐标系、大地坐标系、平面坐标系 2017-04-11 13:53 ( 一)空间直角坐标系 空间直角坐标系的坐标原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上切按右手系于X轴呈90度夹角,某点中的坐标可用该点在此坐标系的各…

九型人格测试,3号成就型人格的职业分析

成就型人格&#xff08;也叫3号人格&#xff09;&#xff0c;在九型人格中&#xff0c;是一种喜欢争强好胜的人格&#xff08;这跟和平型人格具有强烈的对比性&#xff09;。这种人格的人&#xff0c;对于一切给自己带来成就感的事情会表现得非常上心&#xff0c;不会有丝毫地疏…

【鸿蒙 HarmonyOS 4.0】多设备响应式布局

一、背景 在渲染页面时&#xff0c;需要根据不同屏幕大小渲染出不同的效果&#xff0c;动态的判断设备屏幕大小&#xff0c;便需要采用多设备响应式布局。这种设计方法能够动态适配各种屏幕大小&#xff0c;确保网站在不同设备上都能呈现出最佳的效果。 二、媒体查询&#xf…

EMO在哪体验?阿里对口型视频生成工具EMO下载地址?阿里巴巴新模型EMO的技术原理

这几天&#xff0c;阿里的对口型视频生成工具EMO火了。根据官方宣传&#xff0c;EMO只需要上传一张图片和一段音频就可以一键生成对口型视频&#xff0c;而且视频中的嘴型还可以与声音匹配。这项技术支持多语言、对话、唱歌以及快速语速的适配&#xff0c;但也可能成为制造虚假…

[两个栈实现队列]

[两个栈实现队列] 一、题目二、思路三、代码 一、题目 二、思路 //思路:两个栈实现队列&#xff0c;栈是先入后出&#xff0c;队列是队尾入&#xff0c;对头出&#xff0c;&#xff08;先入先出&#xff09;&#xff0c;那么可以这样干&#xff0c;假设一个栈Pushst&#xff0c…

C++ Python网易云音乐播放器

程序示例精选 网易云音乐播放器 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《网易云音乐播放器》编写代码&#xff0c;代码整洁&#xff0c;规则&#xff0c;易读。 学习与应用推荐首选。…

Javaweb之SpringBootWeb案例之自动配置案例的自定义starter实现的详细解析

3.2.4.2 自定义starter实现 自定义starter的步骤我们刚才已经分析了&#xff0c;接下来我们就按照分析的步骤来完成自定义starter的开发。 首先我们先来创建两个Maven模块&#xff1a; 1). aliyun-oss-spring-boot-starter模块 创建完starter模块后&#xff0c;删除多余的文件…

CSS的文本样式属性值,web前端开发规范

正文 介绍下半连接队列 服务器第一次接收到客户端的SYN后&#xff0c;会处于SYN-REVD阶段&#xff0c;此时双方还没有建立完全的连接&#xff0c; 服务器会把此种状态下请求连接放在一个队列里&#xff0c;我们把这种队列称为半连接队列 已经完成三次握手并建立连接&#xff…

html 文字滚动

<marquee> 标签 创建文字滚动的标签 <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>wzgd</title></head><body><marquee direction"left" height"30" width"600&q…

图解 TCP 拥塞控制

文章目录 什么是拥塞控制拥塞控制算法慢启动拥塞避免快速恢复 TCP拥塞控制状态机 什么是拥塞控制 拥塞控制是一种 确保网络中的数据包以可持续的速率传输 的机制&#xff0c;避免因为数据包太多而超过网络当前的承载能力&#xff0c;导致网络性能下降&#xff0c;甚至产生大量…

golang 注释插件

Goanno插件 自动生成golang注释,该插件为 Intellij/Goland 中的 golang 提供自动生成注释 如何使用&#xff1f; control command / (for windows: control alt /)&#xff08;生成注释&#xff09;Right click -> Generate -> Goanno&#xff08;生成注释&#x…

【框架学习 | 第一篇】一篇文章读懂MyBatis

文章目录 1.Mybatis介绍1.1Mybatis历史1.2Mybatis特点1.3与其他持久化框架对比1.4对象关系映射——ORM 2.搭建Mybatis2.1引入依赖2.2创建核心配置文件2.3创建表、实体类、mapper接口2.4创建映射文件2.4.1映射文件命名位置规则2.4.2编写映射文件2.4.3修改核心配置文件中映射文件…

flutterpageview动画,小程序FMP优化实录

是否能进一步优化自己的代码 1.保存在内存中的图片&#xff0c;是否做过压缩处理再保存在内存里否则可能由于图片质量太高&#xff0c;导致 OOM 2.Intent 传递的数据太大&#xff0c;会导致页面跳转过慢。太大的数据可以通过持久化的形式传递&#xff0c;例如读写文件 3.频繁…

could not publish server configuration for tomcat at localhost

1&#xff0c;报错信息如图&#xff1a; 2&#xff0c;找到servers双击&#xff0c;选择Modules&#xff0c;如果有两个webModules ,remove一个&#xff0c; 3&#xff0c;如果重启还是报错&#xff0c;干脆两个都remove&#xff0c;双击tomcat服务add And Remove重新添加

【论文翻译】结构化状态空间模型

文章目录 3.2 对角结构化状态空间模型3.2.1 S4D:对角SSM算法3.2.2 完整应用实例 3.3 对角化加低秩&#xff08;DPLR&#xff09;参数化3.3.1 DPLR 状态空间核算法3.3.2 S4-DPLR 算法和计算复杂度3.3.3赫尔维兹&#xff08;稳定&#xff09;DPLR形式 这篇文章是Mamba作者博士论文…

Blender和3ds Max哪个会是行业未来?

Blender和3ds Max都是很强大的三维建模和渲染软件&#xff0c;各有各的好处。选择哪个软件更好&#xff0c;要看你的需求、预算、技术水平以及行业趋势等因素。 Blender最大的优点是免费且开源&#xff0c;这对预算有限的个人和小团队来说很有吸引力。它有很多建模工具和功能&…

MyBatis介绍

MyBatis是一个优秀的持久层框架&#xff08;就是将某些数据持久化到硬盘或其他存储器中的框架&#xff09;&#xff0c;它把jdbc对数据库的操作进行了封装&#xff0c;使用户只需关注sql本身&#xff0c;不需要去执行jdbc的那一套复杂的操作。 MyBatis通过配置xml文件或注解的方…

YOLOv9独家改进|动态蛇形卷积Dynamic Snake Convolution与RepNCSPELAN4融合

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、改进点介绍 Dynamic Snake Convolution是一种针对细长微弱的局部结构特征与复杂多变的全局形态特征设计的卷积模块。 RepNCSPELAN4是YOLOv9中的特…

智慧城市的新引擎:物联网技术引领城市创新与发展

目录 一、引言 二、物联网技术与智慧城市的融合 三、物联网技术在智慧城市中的应用 1、智慧交通管理 2、智慧能源管理 3、智慧环保管理 4、智慧公共服务 四、物联网技术引领城市创新与发展的价值 五、挑战与前景 六、结论 一、引言 随着科技的日新月异&#xff0c;物…

图像处理 mask掩膜

1&#xff0c;图像算术运算 图像的算术运算有很多种&#xff0c;比如两幅图像可以相加&#xff0c;相减&#xff0c;相乘&#xff0c;相除&#xff0c;位运算&#xff0c;平方根&#xff0c;对数&#xff0c;绝对值等&#xff1b;图像也可以放大&#xff0c;缩小&#xff0c;旋…
最新文章