STM32 学习10 PWM输出

STM32 学习10 PWM输出

  • 一、PWM简介
    • 1. PWM的概念
    • 2. PWM的工作原理
    • 3. PWM 常用的应用场景
  • 二、一些概念
    • 1. 频率
    • 2. 占空比
  • 三、STM32F1 PWM介绍
    • 1. 定时器与寄存器
      • (1)**自动重装载寄存器(ARR)**:
      • (2)**比较寄存器(CCR)**:
    • 2. PWM的输出模式
      • (1)PWM模式1
      • (2)PWM模式2
    • 3. 边沿对齐与中心对齐
      • (1)边沿对齐模式
      • (2)中心对齐模式
  • 四、PWM输出配置步骤
    • 1. 使能定时器及端口时钟
    • 2. 定时器的重映像
      • (1)定时器4复用功能重映像
      • (2)定时器3复用功能重映像
      • (3) 定时器2复用功能重映像
    • 3. 输出端口复用
    • 4. 初始化定时器参数
    • 5. 初始化PWM输出参数
    • 6. 开启定时器
    • 7. 修改TIMx_CCRx的值控制占空比
    • 8. 使能 TIMx 在 CCRx 上的预装载寄存器
    • 9. 使能 TIMx 在 ARR上的预装载寄存器允许位
    • 10. 设置 MOE位
  • 五、代码示例
    • 1. pwm_utils.h
    • 2. pwm_utils.c
    • 3. main函数实现

一、PWM简介

1. PWM的概念

PWM的全称是脉冲宽度调制(Pulse Width Modulation),是一种控制模拟信号的方法。它通过改变脉冲的宽度来控制模拟信号的平均值。

2. PWM的工作原理

PWM的工作原理是将一个周期性的脉冲信号与一个控制信号进行比较。当控制信号大于脉冲信号时,输出高电平;当控制信号小于脉冲信号时,输出低电平。通过改变脉冲信号的宽度,可以控制输出信号的平均值。

输出信号的平均值连在一起,可以达到模拟信号的效果,如下图所示:
wikipedia示例

3. PWM 常用的应用场景

  • 电机控制:用于控制电机的速度和方向;
  • 照明控制:用于控制灯光的亮度;
  • 电源管理:用于控制电源的输出电压;
  • 音频控制:用于控制声音的大小。

二、一些概念

1. 频率

PWM波形在单位时间内重复出现的次数。

2. 占空比

PWM波形中高电平信号所占的比例。

三、STM32F1 PWM介绍

1. 定时器与寄存器

STM32F1除了基本定时器TIM6和TIM7,其它定时器都可以产生PWM输出。其中:

  • TIM1和TIM8:均可同时产生7路PWM输出;
  • 其它通用定时器:均可同时产生4路PWM输出。

在STM32微控制器中,生成PWM信号通常涉及到自动重装载寄存器(ARR)和比较寄存器(CCR)两个重要的寄存器。

(1)自动重装载寄存器(ARR)

  • 通过修改ARR的值,可以调节PWM信号的周期,从而改变PWM信号的频率。
  • 当ARR增加时,整个PWM信号的周期增加,导致PWM信号的频率降低。

(2)比较寄存器(CCR)

  • 通过修改CCR的值,可以调节PWM信号的占空比,从而改变PWM信号的高电平持续时间。
  • CCR的值通常应该小于ARR的值,以确保PWM信号的占空比在0到100%之间。
  • 当CCR增加时,高电平部分的持续时间增加,导致PWM信号的占空比增加。

2. PWM的输出模式

PWM输出模式一共8种,常用的是PWM1和PWM2,其用法差不多,区别如下:
下表是PWM1和PWM2的区别:

(1)PWM模式1

在该模式下,定时器的计数器从0开始递增,

  • 当计数器的值小于CCR时,输出为高电平;
  • 当计数器的值大于等于CCR时,输出为低电平;
  • 在计数器达到ARR时,产生一个更新事件,计数器重新从0开始计数。

这种模式下,PWM信号的周期由ARR决定,占空比由CCR决定。

(2)PWM模式2

与PWM模式1相比,PWM模式2输出有效性正好是相反的。

下表是PWM1和PWM2的比较:

模式CNT 计算方式CNT<CCRCNT>CCR
PWM1递增通道CH有效通道CH无效
PWM1递减通道CH无效通道CH有效
PWM2递增通道CH无效通道CH有效
PWM2递减通道CH有效通道CH无效

3. 边沿对齐与中心对齐

(1)边沿对齐模式

  • 在边沿对齐模式下,PWM信号的起始位置位于PWM周期的起始边沿(即ARR),然后递增至CCR,再递增至ARR,最后重复此过程。
  • PWM信号的高电平和低电平都与PWM周期的边沿对齐,即从PWM周期的起始边沿开始。
  • 边沿对齐模式通常用于需要高精度输出的应用,例如需要精确控制PWM信号的起始和终止时间的应用场景。
    在这里插入图片描述
    以上图为例,TIMx_CR1寄存器的DIR位为低时,递增计数,设ARR=8,当CCRx=4时:
  • CNT从0增至3的时候,输出PWM参考信号0CxREF为有效的高电平;
  • CNT从4到8的时候,0CxREF输出为低电平;

0CXREF表示定时器的比较器

(2)中心对齐模式

  • 在中心对齐模式下,PWM信号的起始位置位于PWM周期的中间,然后递增至CCR,再递减至0,再重复此过程。
  • PWM信号的高电平和低电平都与PWM周期的中心对齐,即从PWM周期的中间开始。
  • 中心对齐模式通常用于需要调节占空比范围较大的应用,例如需要在PWM周期内任意调节占空比的应用场景。由于PWM信号的起始位置位于PWM周期的中间,因此可以实现更宽范围的占空比调节。

在这里插入图片描述
以上图为例,设ARR=8,当CCRx=4时,

  • 当CNT<CCRx,输出为有效信号高电平 ;
  • 当CNT>CCRx,输出为有效信号低电平;

四、PWM输出配置步骤

PWM 的配置在库文件 time.c 中。

1. 使能定时器及端口时钟

下面是使能设置代码:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

2. 定时器的重映像

后面示例的 PWM 需要配置引脚的复用功能(重映像),定时器的重映像可在《STM32F10x参考手册》查询,摘录如下:

(1)定时器4复用功能重映像

在这里插入图片描述

(2)定时器3复用功能重映像

在这里插入图片描述

(3) 定时器2复用功能重映像

在这里插入图片描述

以使用 TIM3 的通道1为例,它默认是在PA6引脚上,它完全重映像是在PC6,后面使用的开发板上原理图示:
在这里插入图片描述
示例代码将使用PC6输出TIM3的通道1 PWM波。

代码示例:

// 设置 TIM3 完全重映像
GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);

3. 输出端口复用

在输出PWM信号时,通常需要考虑信号的稳定性、噪声抑制以及输出电流的能力等因素。复用推挽输出是一种常见的配置方式。

// 复用推挽输出
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;  

4. 初始化定时器参数

包括 : 自动重载值、分频系数、计数方式等。

void TIM_TimeBaseInit(TIM_TypeDef*TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStructure)

5. 初始化PWM输出参数

包括 :PWM 模式、输出极性、使能等。

void TIM_OCxInit(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStructure);

// 结构体定义 
typedef struct
{
	uint16_t TIM_OCMode;  		// 比较输出模式
	uint16_t TIM_OutputState;  	// 比较输出使能
	uint16_t TIME_OutputNState: // 比较互补输出使能
	uint32_t TIM_Pulse;        	// 脉冲宽度 0~65535
  /**
   * 输出极性
   *   * TIM_OCPolarity_High: 高电平有效
   *   * TIM_OCPolarity_Low: 低电平有效
   */
	uint16_t TIM_OCPolarity;
  /**
   * 互补比较输出极性
   *   * TIM_OCNPolarity_High: 高电平有效
   *   * TIM_OCNPolarity_Low: 低电平有效
   */	
	uint16_t TIM_OCNPolarity;
  /**
   * 空闲状态下比较输出状态
   *   * TIM_OCIdleState_Set: 置位
   *   * TIM_OCIdleState_Reset: 复位
   */	
	uint16_t TIM_OCIdleState;
  /**
   * 空闲状态下比较输出状态
   *   * TIM_OCNIdleState_Set: 置位
   *   * TIM_OCNIdleState_Reset: 复位
   */
	uint16_t TIM_OCNIdleState;
} TIM_OCInitTypeDef;

6. 开启定时器

// NewState: 新的状态,可以是 ENABLE 或 DISABLE。
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)   

7. 修改TIMx_CCRx的值控制占空比

void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1);

8. 使能 TIMx 在 CCRx 上的预装载寄存器

// 参数 TIM_OCPreload 可为 TIM_OCPreload_Enable、TIM_OCPreload_Disable
void TIM_OCxPreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);

9. 使能 TIMx 在 ARR上的预装载寄存器允许位

// NewState: 新的状态,可以是 ENABLE 或 DISABLE。
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState);

10. 设置 MOE位

对于高级定时器,需要设置MOE位。
MOE 位,全称 Master Output Enable,是定时器控制寄存器 1 (TIMx->CR1) 中的一个控制位(15位),用于使能或禁用定时器主输出。

  • MOE 位可以用于控制 PWM 输出的使能和禁用。
  • 可以使用 MOE 位来实现软启动和软停止功能。
  • 可以使用 MOE 位来实现故障保护功能。
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState);

五、代码示例

本实验对TIM3控制,使用通道1, 对TIM3_CH1重映像到PC6引脚,控制PC6上接的LED亮度。
示例程序控制LED呼吸灯效果,渐渐变亮,再渐渐变暗。

1. pwm_utils.h

#ifndef __PWM_UTILS_H__
#define __PWM_UTILS_H__

#include "stm32f10x.h"

void tim3_ch1_pwm_init(u16 preriod, u16 prescaler);
void tim3_ch1_pwm_set_duty(u16 duty);
#endif

2. pwm_utils.c

#include "pwm_utils.h"
#include "led_utils.h"

/**
 * @brief  定时器3初始化
*/
void tim3_ch1_pwm_init(u16 preriod, u16 prescaler){
    // 使能TIM3时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
    // 使能LED所在端口的时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);
    // 使能AFIO
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);

    GPIO_InitTypeDef GPIO_InitStructure; //定义GPIO初始化结构体
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //设置输出速度为50MHz
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //设置为推挽输出模式
    GPIO_Init(LED_PORT, &GPIO_InitStructure); //初始化 LED_PORT

    // 管脚重映像
    GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);
    // 定时器初始化
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    TIM_TimeBaseStructure.TIM_Period = preriod; //设置自动重装载寄存器周期值
    TIM_TimeBaseStructure.TIM_Prescaler = prescaler; //设置时钟预分频数
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分频因子
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    // 初始化
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

    // PWM模式1
    TIM_OCInitTypeDef TIM_OCInitStructure;
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式1
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性高
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能
    TIM_OC1Init(TIM3, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM3 OC1

    // 使能TIM3的CCR1寄存器预装载
    TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);
    // 使能TIM3的ARR寄存器预装载
    TIM_ARRPreloadConfig(TIM3, ENABLE);
    // 使能TIM3
    TIM_Cmd(TIM3, ENABLE);
}
void tim3_ch1_pwm_set_duty(u16 duty){
    // 设置定时器3的PWM占空比
    TIM_SetCompare1(TIM3, duty);
}

3. main函数实现

#include "gpio_utils.h"
#include "stm32f10x.h"
#include "sys_tick_utils.h"
#include "led_utils.h"
#include "pwm_utils.h"

// 主函数
int main(void)
{
	// led 初始化
    custom_led_init();
	// tick 初始化
	sys_tick_init(72);

	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
	// PWM 初始化,2K
	tim3_ch1_pwm_init(500, 72-1);

	led_all_off();
	
	int i = 0;
	u8 direction=0;
    while (1) //无限循环
    {
		tim3_ch1_pwm_set_duty(i);
		if(direction==0){
			i++;
		}else{
			i--;
		}
		if(i>300){
			direction = 1;
		}else if(i<1){
			direction = 0;
		}
		delay_ms(10);
    }
}

实测PC6的波形是一直变化中:

在这里插入图片描述
本文代码开源地址:
https://gitee.com/xundh/stm32_arm_learn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/439582.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

商业前端TS开发自动化工具

本期作者 一、背景 商业侧的业务比较复杂&#xff0c;B端项目中含有大量常量类的类型判断&#xff0c;且因历史原因&#xff0c;很多常量值前端无法直接知其含义&#xff0c;这既不利于新人的上手&#xff0c;也不利于项目的维护。 在开发协作上&#xff0c;前后端的API沟通&a…

面向对象中类与对象

思考系统1000个对象逻辑结构 理解系统1000个对象物理结构 对象this 引用 类的静态变量和静态函数 静态变量和静态函数属于类本身&#xff0c;而不是类的实例。它们可以在不创建类的实例的情况下直接通过类名访问。静态变量在内存中只有一份拷贝&#xff0c;被所有实例共享&…

人工智能(AI)与电网系统的结合

人工智能&#xff08;AI&#xff09;与电网系统的结合可以带来许多潜在的好处&#xff0c;包括提高电网的运行效率、安全性和可靠性。以下是一些主要的应用领域&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交…

基于SSM的环境监测管理系统设计与实现

目 录 摘 要 I Abstract II 引 言 1 1 主要技术和工具介绍 3 1.1 SSM框架简介 3 1.1.1 Spring 3 1.1.2 Mybatis 数据持久化技术 3 1.1.3 SpringMVC 3 1.2 MySQL数据简介 4 1.3 本章小结 4 2 系统分析 5 2.1 需求分析 5 2.1.1 功能分析 5 2.1.2 用例说明 6 2.2 可行性分析 9 2.…

深度学习与机器学习:互补共进,共绘人工智能宏伟蓝图

在人工智能的广阔天地中&#xff0c;深度学习与机器学习如同两支强大的队伍&#xff0c;各自闪耀着独特的光芒&#xff0c;却又携手共进&#xff0c;共同书写着智能的辉煌篇章。尽管深度学习是机器学习的一个分支&#xff0c;但它们在模型构建、特征提取以及应用场景等多个方面…

Linux基础IO【 详 解 】

文章目录 C语言文件IOC语言文件接口汇总默认打开的三个流 系统文件IOopenclosewriteread 文件描述符fd文件描述符的分配规则重定向重定向的本质dup2 FILEFILE当中的文件描述符FILE当中的缓冲区 理解文件系统初识inode磁盘分区与格式化介绍 软硬链接软链接硬链接软硬链接的区别 …

【动态规划】二维费用的背包问题

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;一和零 &#x1f449;&#x1f3fb;一…

外汇天眼科普:什么是场内交易和场外交易?

场内交易 又称交易所交易&#xff0c;指所有的供求方集中在交易所进行竞价交易的交易方式。 这种交易方式具有交易所向交易参与者收取保证金、同时负责进行清算和承担履约担保责任的特点。 此外&#xff0c;由于每个人都有不同的需求&#xff0c;交易所事先设计出标准化的金融…

C++ Qt开发:QFileSystemModel文件管理组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍如何运用QFileSystemModel组件实现文件管理器…

Redis冲冲冲——Redis分布式锁如何实现

目录 引出Redis分布式锁如何实现Redis入门1.Redis是什么&#xff1f;2.Redis里面存Java对象 Redis进阶1.雪崩/ 击穿 / 穿透2.Redis高可用-主从哨兵3.持久化RDB和AOF4.Redis未授权访问漏洞5.Redis里面安装BloomFilte Redis的应用1.验证码2.Redis高并发抢购3.缓存预热用户注册验证…

广播

1.什么是广播 2.标准广播 BroadStandardActivity.java package com.tiger.chapter09;import androidx.appcompat.app.AppCompatActivity;import android.content.Intent; import android.content.IntentFilter; import android.os.Bundle; import android.view.View;…

OPC UA 学习:文件传输

本博文是OPC 10000-20: UA Part 20: File Transfer 的学习笔记。 客户端需要读写服务器端的文件&#xff0c;OPCUA 规范中&#xff0c;是通过文件模型实现的。客户端通过调用文件模型中的方法来处理文件。 文件类型 文件类型&#xff08;FileType&#xff09;的属性 属性 文…

什么是工业物联网关?工业物联网关有什么作用?

在数字化和智能化浪潮席卷全球的今天&#xff0c;工业物联网&#xff08;IIoT&#xff09;成为了推动工业4.0革命的核心力量。而在这场革命中&#xff0c;工业物联网关发挥着至关重要的作用。那么&#xff0c;什么是工业物联网关&#xff1f;它又有哪些功能呢&#xff1f;今天&…

教育照明灯具十大排名榜有哪些?护眼台灯选购看这一篇就够了!

现在关于孩子的教育问题&#xff0c;父母还是十分重视的&#xff0c;当然除了让孩子接受良好的教育&#xff0c;给孩子营造良好的学习空间也成为了很多父母心中重要的事情&#xff0c;其中关于光线的问题不少&#xff0c;不良光线是很多孩子近视的导火索&#xff0c;而护眼台灯…

6、string字符串拼接

#include <iostream> using namespace std;void test01 () {string s1 "我";s1 "爱玩游戏";cout << s1 << endl;s1 :;string s2 "lol dnf";s1 s2;cout << s1 << endl;string s3 "i";s3.append(&q…

Docker容器的操作

目录 运行容器 查看容器 查看容器详细信息 删除容器 启动容器 停止容器 重启容器 暂停容器 激活容器 杀死容器 进入容器 常用 查看容器的日志 拷贝容器的文件到本地 容器改名 查看容器资源 查看容器内部的进程 监测容器发生的事件 检测容器停止以后的反回值…

【重要公告】BSV区块链协会开始对Teranode节点软件进行技术测试

​​发表时间&#xff1a;2024年2月22日 Teranode节点软件将使BSV区块链网络的交易处理速度提升至每秒110万笔&#xff0c;从而拓宽企业和政府客户的区块链应用范围。 2024年2月22日&#xff0c;瑞士楚格 - BSV区块链协会宣布已经开始对Teranode节点软件进行技术测试&#xff…

【操作系统概念】 第8章:内存管理

文章目录 0.前言8.1 背景8.1.1 基本硬件8.1.2 地址绑定8.1.3 逻辑地址空间和物理地址空间8.1.4 动态加载&#xff08;dynamic loading&#xff09;8.1.5 动态链接&#xff08;dynamically linking&#xff09;与共享库 8.3 连续内存分配&#xff08;contiguous memory allocati…

基于单片机的篮球计分器设计

在当今的体育赛事中,比赛的计分系统对观众和运动员尤为重要,观众可以根据比分的实时显示为自己支持的队伍呐喊助威,运动员更是要靠着计分器来把握比赛的节奏,包括攻防转换、替补换人以及赛间休息等等。因此,为了让比赛进行得更加专业化和流畅化,我们有必要对比赛的计分系…

IDEA快捷键大全,再也不会忘记了 ,建议收藏关注~~

熟练使用 IDEA 快捷键&#xff0c;可以显著提升编码效率。本文汇总了 Windows 系统下 IDEA 的快捷键&#xff0c;非常多&#xff0c;但是没有必有都要记住&#xff0c;仅需要记住下文标注 ✔️ 的必会快捷即可&#xff0c;至于那些使用频率不是很高的快捷键&#xff0c;手动点击…
最新文章