C++:模版进阶 | Priority_queue的模拟实现

                                            创作不易,感谢三连支持 

一、非类型模版参数

模板参数分类为类型形参与非类型形参

类型形参即:出现在模板参数列表中,跟在class或者typename之类的参数类型名称。

非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

注意:

非类型的模板参数必须在编译期就能确认结果。(分离编译会讲解)
 

我们来介绍一个c++11引入的array

       array的底层其实封装的是一个静态数组。并且用到了非类型形参,在这里指代的是底层静态数组的容量大小。

思考:

1、为什么要有这个非模版形参??define定义宏常量难道不香吗??

      define定义宏常量有时也可以解决问题,但是宏常量的作用域是全局,比如我们想让一个数组是10的容量,一个数组是20的容量,显然是做不到的,但是模版是可以做到的!!我们不传的时候N就是缺省值,传的时候就是我们指定的容量。

 2、我直接用静态数组不行吗?为什么非得用类把他封起来??

(1)为了增加检查的功能,我们知道vs对于静态数组的越界功能是抽查行为,因此不是很安全,而我们把他封装在类里面,这样就可以去写个断言来防止数组越界

 (2)[ ]的重载不仅可以增加检查功能,还可以去控制静态数组内容是否可以被写,同时还可以利用这个类去增加许多新的接口

 3.能够作为非类型模版参数的有哪些类型??

      只能是和int相似类型的才行,比如char、short、int、long int ……浮点数类对象以及字符串是不允许作为非类型模板参数的。

二、模版的特化

         通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理,比如:实现了一个专门用来进行小于比较的函数模板

        可以看到,Less绝对多数情况下都可以正常比较,但是在特殊场景下就得到错误的结果。上述示例中,p1指向的d1显然大于p2指向的d2对象,但是Less内部并没有比较p1和p2指向的对象内容,而比较的是p1和p2指针的地址,这就无法达到预期而错误。

         此时,就需要对模板进行特化。即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化。
 

2.1 函数模版特化

函数模板的特化步骤:
1. 必须要先有一个基础的函数模板
2. 关键字template后面接一对空的尖括号<>
3. 函数名后跟一对尖括号,尖括号中指定需要特化的类型
4. 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。

我们展示一下用法:

相当于是我们特殊化了一个版本出来,这个版本可以去比较指针解引用的内容!

但是我们还有这样一个方法——利用函数匹配的规则,直接把这个特殊类型的函数给出来

         我们可以把函数模版当成是冰箱里的菜,模版特化的函数当成是预制菜,最后这个简单函数是现成菜。当我们有现成的吃的时候,就不会考虑去吃没做过的菜。这其实就是函数匹配规则!

       并且这种函数实现简单明了,代码的可读性高,容易书写,因为对于一些参数类型复杂的函数模板,特化时特别给出,因此函数模板不建议特化

 2.2 类模版特化

       函数有匹配规则,所以其实不怎么依赖特化,但是类并没有匹配规则啊!!所以特化最广泛的使用是在类中。类模版特化的步骤和函数模版特化的步骤是相似的。

2.2.1 全特化

全特化即是将模板参数列表中所有的参数都确定化

2.2.2 部分特化

部分特化的意思就是说,我们把其中一部分参数进行特化了。

2.2.3 偏特化(非常重要)

       偏特化并不仅仅是指特化部分参数,而是针对模板参数更进一步的条件限制所设计出来的一个特化版本。

      比如偏特化为指针类型(比较常见),或者是偏特化为引用类型(不常见)。

      后面讲到仿函数的时候会做更进一步的介绍

三、模版分离编译

        一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。
 

      一般来说,在我们书写大项工程的时候,为了保证代码的简洁性,我们常常将函数声明放在一个头文件里,将函数定义放在一个源文件里,然后再用另外一个源文件去进行测试。但是在模版这个地方,分离编译成为了一个难题!

3.1 模版的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// flby.h
template<class T>
T Add(const T& left, const T& right);
// flby.cpp
#include"flby.h"
template<class T>
T Add(const T& left, const T& right)
{
return left + right;
}
// test.cpp
#include"flby.h"
int main()
{
Add(1, 2);
Add(1.0, 2.0);
return 0;
}


为什么会这样呢??

3.2 解决方法

方法一:将声明和定义放到一个文件 "xxx.hpp" 里面或者xxx.h其实也是可以的。

      因为最后都会在测试文件里面展开,这样编译的过程就可以进行实例化生成函数。一般比较推荐使用这种。


方法二:模板定义的位置显式实例化。这种方法不实用,不推荐使用。

显式实例化的意思就是,你不是推断不出来吗??那我就直接告诉你要生成什么样的函数!

四、模版的总结

优点:
1. 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
2. 增强了代码的灵活性
缺陷:
1. 模板会导致代码膨胀问题,也会导致编译时间变长(需要推导并生成实例化函数)
2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误

五、priority_queue的介绍

priority_queue的文档介绍

1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大(小)的。

2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。

3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
 

empty():检测容器是否为空
size():返回容器中有效元素个数
front():返回容器中第一个元素的引用
push_back():在容器尾部插入元素

pop_back():删除容器尾部元素

5. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector。

6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。
 

其实优先级队列就是我们数据结构里的堆!!

DS:二叉树的顺序结构及堆的实现_顺序打印堆-CSDN博客

大家可以看看博主的这篇博客,堆主要的应用就是解决top-k问题,在这篇文章里有具体的分析。

六、priority_queue的模拟实现

//仿函数
template<class T>
struct less                           //冰箱里的菜  
{
	bool operator()(const T& x, const T& y) const
	{
		return x < y;
	}
};
template<class T>
struct greater
{
	bool operator()(const T& x, const T& y) const
	{
		return x > y;
	}
};
template<class T, class Container = vector<T>, class Compare = less<T>>//默认是建大堆
	class priority_queue
	{
	public:
		void adjust_up(int child)
		{
			int parent = (child - 1) / 2;
			while (child > 0)
			{
				if (Compare()(_con[parent], _con[child]))//_con[child] > _con[parent]
				{
					std::swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
					break;
			}
		}

		void adjust_down(int parent)
		{
			int child = parent * 2 + 1;//建大堆,找大,假设左孩子比右孩子大
			while (child < _con.size())
			{
				if (child + 1 < _con.size() && (Compare()(_con[child], _con[child + 1])))//_con[child] < _con[child + 1]
					++child;
				if (Compare()(_con[parent], _con[child]))//_con[parent] < _con[child]
				{
					std::swap(_con[parent],_con[child]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
					break;
			}
		}

		bool empty() const
		{
			return _con.empty();
		}

		size_t size() const
		{
			return _con.size();
		}


		const T& top() const
		{
			return _con[0];
		}

		void push(const T& val)
		{
			_con.push_back(val);
			//插入后要向上调整
			adjust_up(_con.size() - 1);//向上调整算法
		}

		void pop()
		{
			std::swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			adjust_down(0);//向下调整算法
		}

		void swap(priority_queue<T>& q)
		{
			_con.swap(q._con);
		}
	private:
		Container _con;
	};

       这边我们用到了两个仿函数,如果是建大堆的话,用less<T>,如果是建小堆的话,用greater<T>,仿函数就是通过重载()的行为,模拟出函数的效果,比函数指针会易用很多

七、模版特化的深入分析

假设我们放了一个日期类进去,能进行比较吗??

 答案是可以的,前提是我们需要在日期类重载出比较操作符

如果是以下这种情况呢??

 虽然指针也可以比较大小,但是指针比较大小的方式显然不符合我们的预期,我们希望的是比较指针解引用的内容,这个时候应该怎么办呢?

第一个方法:再写一个专门用来比较指针解引用的仿函数

	struct PDateless
	{
		bool operator()(const Date* p1, const Date* p2)
		{
			return *p1 < *p2;
		}
	};
	struct PDateGreater
	{
		bool operator()(const Date* p1, const Date* p2)
		{
			return *p1 > *p2;
		}
	};

 第二个方法:对原来的less和greater进行全特化出一个专门比较Date指针类型的仿函数

//全特化版本(因为全特化了,只能针对Data*)  (即食菜)
	template<>
	struct less<Date*>
	{
		bool operator()(const Date* x, const Date* y) const
		{
			return *x < *y;
		}
	};
//全特化版本(因为全特化了,只能针对Data*)
template<>
struct greater<Date*>
{
	bool operator()(const Date* x, const Date* y) const
	{
		return *x > *y;
	}
};

但是以上两种方法是不是都不太好,因为无论是全特化还是写一个全新的仿函数,我们都只是针对了Date*类型,但是如果我们以后遇到int* double*……难道也要再写一个吗??所以就有了一个更好的方法。

方法三:对原来的less和greater进行偏特化限制出一个专门比较任意指针类型的仿函数

//偏特化版本  具体类型,针对指针这个泛类  必须在原来的基础之上  (预制菜)
template<class T>
struct less<T*>
{
	bool operator()(const T* x, const T* y) const
	{
		return *x < *y;
	}
};
//偏特化版本 (针对所有类型的指针)
template<class T>
struct greater<T*>
{
	bool operator()(const T* x, const T* y) const
	{
		return *x > *y;
	}
};

 我们这个时候发现,偏特化可以帮助我们更好地解决指针比较这样的问题。

      给大家举个形象的比喻,模版就相当于是冰箱里的菜,全特化版本就相当于是即食菜,而偏特化就相当于是预制菜。重新写一个特定的仿函数就相当于是外卖

     外卖>即食菜>预制菜>冰箱里的菜。   

1、 即食菜和预制菜理论上来说都是通过冰箱里的菜走出来的,所以必须要先有模版才能进行全特化和偏特化。

2、从前往后优先级变低。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/441511.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AIGC启示录:深度解析AIGC技术的现代性与系统性的奇幻旅程

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

LayerNorm的图是不是画错了

这是网上一张很流行的说明几个 Normalization 区别的图 这图出自Kaiming的文章 Group Norm 但是他这个 Layer Norm 的图是不是画错了? 我大四写毕设的时候就想问&#x1f923;&#x1f923;&#x1f923; 这都几年过去了 我觉得图应该是这样画的&#xff0c;相同颜色的区域…

HifiFace: 3D形状和语义先验引导高保真人脸交换阅读笔记

HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping HifiFace: 3D形状和语义先验引导高保真人脸交换 介绍 可以很好地保留源人脸的脸型&#xff0c;并产生逼真的结果。不同于现有的人脸交换只使用人脸识别模型来保持身份相似性的方法&#xff0c;我们…

【万题详解】DFS搜索专题合集(上)

专栏推荐 我的专栏——专栏链接 1.文章平均质量分 70分以上 2.以洛谷题为基础&#xff0c;解决C问题 3.有题目、讲解、思路、参考代码…… 4. 文章数&#xff1a;29 &#xff08;2024.3.8&#xff09; 课前C小程序&#xff08;脱控极域电子教室&#xff09; 这个图标相信…

C语言分析基础排序算法——选择排序

目录 选择排序 选择排序 堆排序 选择排序 选择排序 选择排序的基本思路是&#xff0c;定义两个区间指针begin和end&#xff0c;遍历数组中的每一个数据找出最大的数据的下标和最小的数据的下标&#xff0c;之后与begin和end指针分别交换小数据与begin的位置以及大数据和e…

计算机设计大赛 深度学习驾驶行为状态检测系统(疲劳 抽烟 喝水 玩手机) - opencv python

文章目录 1 前言1 课题背景2 相关技术2.1 Dlib人脸识别库2.2 疲劳检测算法2.3 YOLOV5算法 3 效果展示3.1 眨眼3.2 打哈欠3.3 使用手机检测3.4 抽烟检测3.5 喝水检测 4 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于深度学习的驾…

如何保证消息不丢之MQ重试机制消息队列

1. 简介 死信队列&#xff0c;简称&#xff1a;DLX&#xff0c;Dead Letter Exchange&#xff08;死信交换机&#xff09;&#xff0c;当消息成为Dead message后&#xff0c;可以被重新发送到另外一个交换机&#xff0c;这个交换机就是DLX 那么什么情况下会成为Dead message&a…

全球科技创新领域大检阅“2024上海国际智能科技及创新展览会”

随着科技的飞速发展&#xff0c;创新成为了推动社会进步的核心动力。在这样的背景下&#xff0c;“2024上海国际科技及创新展览会”应运而生&#xff0c;旨在汇聚全球智能科技领域的精英&#xff0c;共同展示最新的科技成果&#xff0c;探讨未来的发展方向。 本次展会将于2024年…

Alveo 概念拓扑结构

在 Alveo 加速卡中,涉及到的概念拓扑结构主要包括 Alveo 卡上的各个关键组件以及与主机系统之间的通信结构。以下是对这些概念拓扑结构的简要介绍: 1.DDR 即双数据率内存(Double Data Rate memory),是一种常见的计算机内存类型,用于存储和提供处理器所需的数据和指令。…

HBase安装,配置,启动,检查

目录: 一、HBase安装&#xff0c;配置 1、下载HBase安装包 2、解压&#xff0c;配置环境变量并激活 3、hbase 配置 4、将hadoop和zookeeper的配置文件创建软连接放在hbase配置目录 5、配置 regionserver 二、HBase启动与关闭&#xff0c;安装检验 1、启动关闭hbase的命令 2、 检…

mac本地启动sentinel

启动Sentinel控制台 1&#xff09;下载sentinel控制台jar包 https://github.com/alibaba/Sentinel/releases/download/1.8.6/sentinel-dashboard-1.8.6.jar 2&#xff09;启动sentinel控制台 使用如下命令启动控制台&#xff1a; java -Dserver.port8080 -Dcsp.sentinel.d…

基于单片机的红外测距仪设计

目 录 摘 要 I Abstract II 引 言 1 1 控制系统设计 3 1.1 主控制器选择 3 1.2 项目总体设计 3 2 项目硬件设计 5 2.1 单片机控制模块 5 2.2 测距模块设计 9 2.3 液晶显示模块 10 2.4 报警模块 11 3 项目软件设计 12 3.1 软件开发环境 12 3.2 系统主程序设计 13 3.3 LCD显示程…

数智化时代的新潮流:企业如何利用数据飞轮驱动增长?_光点科技

随着数据中台理念的逐渐“降温”&#xff0c;企业数智化的探索并未停歇。反而&#xff0c;数据飞轮成为了新的焦点&#xff0c;它承诺为企业带来更紧密的业务与数据结合&#xff0c;从而推动持续的增长。本文将探讨企业如何利用数据飞轮的概念&#xff0c;赋能业务&#xff0c;…

Spark 核心API

核心 API spark core API 指的是 spark 预定义好的算子。无论是 spark streaming 或者 Spark SQL 都是基于这些最基础的 API 构建起来的。理解这些核心 API 也是写出高效 Spark 代码的基础。 Transformation 转化类的算子是最多的&#xff0c;学会使用这些算子就应付多数的数…

勒索软件事件手册:综合指南

近年来&#xff0c;勒索软件攻击的频率和复杂程度都急剧增加。这些攻击的影响可能是毁灭性的&#xff0c;从经济损失到严重的运营中断。 这就是为什么对于希望防范这种网络安全威胁的企业来说&#xff0c; 强大的勒索软件事件响应手册是不可谈判的。 本指南旨在深入了解勒索软…

【工作实践-07】uniapp关于单位rpx坑

问题&#xff1a;在浏览器页面退出登录按钮上“退出登录”字样消失&#xff0c;而在手机端页面正常;通过查看浏览器页面的HTML代码&#xff0c;发现有“退出登录”这几个字&#xff0c;只不过由于样式问题&#xff0c;这几个字被挤到看不见了。 样式代码中有一行为&#xff1a…

UI自动化测试使用场景及脚本录制

经常有人会问&#xff0c;什么样的项目才适合进行UI自动化测试呢&#xff1f;UI自动化测试相当于模拟手工测试&#xff0c;通过程序去操作页面上的控件。而在实际测试过程中&#xff0c;经常会遇到无法找到控件&#xff0c;或者因控件定义变更而带来的维护成本等问题。 哪些场…

设计高并发系统的关键策略

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; 目录 引言 一. 架构设计 1. 微服务架构 2. 分布式架构 3. 负…

VR全景技术在VR看房中有哪些应用,能带来哪些好处

引言&#xff1a; 随着科技的不断发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术在房地产行业中的应用也越来越广泛。其中&#xff0c;VR全景技术在VR看房中的运用尤为突出。今天&#xff0c;让我们一起深入探讨VR全景技术在VR看房中的应用及其带来的种种好处。 一、…

智慧灯杆-智慧城市照明现状分析(2)

作为城市照明的主体,城市道路照明伴随着我国城市建设的高速发展,获得了快速的增长。国家统计局数据显示,从2004年至2014年,我国城市道路照明灯数量由1053.15万盏增加到3000万盏以上,年均复合增长率超过11%,城市道路照明行业保持持续快速发展的趋势。 近几年,随着中国路灯…