机器学习深度学习——softmax回归(上)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——线性回归的简洁实现
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

softmax回归

  • 分类问题
  • 网络架构
  • 全连接层的参数开销
  • softmax运算
  • 小批量样本的矢量化

回归可以用来预测多少的问题,比如房屋被售出价格。而除了预测,我们也对分类问题感兴趣,不是问“多少”,而是问“哪一个”。如:“某个邮件是否是垃圾邮件?图像描绘的是什么动物?某人接下来最可能看哪部电影?”

分类问题

以图像分类为例,每次输入一个2×2的灰度图像,可以用一个标量表示每个像素值,每个图像对应四个特征x1、x2、x3、x4。假设每个图像属于类别“猫”“鸡”和“狗”中的一个。
接下来要选择如何表示标签,最直接的想法是选择y∈{1,2,3}分别代表{狗,猫,鸡}。
如果类别间有一些自然顺序,比如我们要试图预测{婴儿,儿童,青少年,青年人,中年人,老年人},那么该问题就会转变为回归问题。但一般的分类问题和类别之间的自然顺序是无关的。
独热编码
独热编码是一个向量,它的分量与类别是一样多的。类别对应的分量设置为1,其它所有分量设置为0,如:
y∈{(1,0,0),(0,1,0),(0,0,1)}分别代表三类动物。

网络架构

要解决线性模型的分类问题,需要设置和输出一样多的仿射函数,在上面的问题中,我们有4个特征和3个可能的输出类别,所以我们需要用12个标量来表示权重,3个标量来表示偏置(带下标的b):
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 2 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 o 1 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w_{14}+b_1\\ o_2=x_2w_{21}+x_2w_{22}+x_3w_{23}+x_4w_{24}+b_2\\ o_1=x_1w_{31}+x_2w_{32}+x_3w_{33}+x_4w_{34}+b_3 o1=x1w11+x2w12+x3w13+x4w14+b1o2=x2w21+x2w22+x3w23+x4w24+b2o1=x1w31+x2w32+x3w33+x4w34+b3
其中o表示未规范化的预测。
我们可以用神经网络图来描述这个计算过程,显然softmax回归也是个单层神经网络。由于输出取决于所有的输入,所以softmax回归的输出层也是全连接层
在这里插入图片描述
可以用o=Wx+b来表示模型。

全连接层的参数开销

全连接层无处不在,对于任何具有d个输入和q个输出的全连接层,参数开销为:
O ( d q ) O(dq) O(dq)
这个数字还是太大了,但将d个输入转换为q个输出的成本可以减少到:
O ( d q n ) O(\frac{dq}{n}) O(ndq)
超参数n可以由我们灵活指定。

softmax运算

现在我们将优化参数以最大化观测数据的概率。为了得到预测结果,我们设置一个阈值,如选择具有最大概率的标签。
我们希望模型输出三个类的概率,然后选用最大输出值来作为我们的预测。
我们不能将未规范化的预测o直接视作我们感兴趣的输出。因为将线性层的输出直接视为概率时会存在一些问题:
1、我们没有限制这些输出数字的总和为1。
2、根据输入的不同,它们可以为负值,违背了概率基本公理。
要将输出视为概率,必须保证在任何数据上的输出都是非负的且总和为1。此外,需要训练一个目标函数,来激励模型精准的估计概率。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。这个属性叫做校准
而softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们让每个求幂后的结果除以它们的总和:
y ^ = s o f t m a x ( o ) ,其中 y ^ j = e x p ( o j ) ∑ k e x p ( o k ) \hat{y}=softmax(o),其中\hat{y}_j=\frac{exp(o_j)}{\sum_kexp(o_k)} y^=softmax(o),其中y^j=kexp(ok)exp(oj)
这里,对于所有的j,总有:
0 ≤ y ^ j ≤ 1 0≤\hat{y}_j≤1 0y^j1
因此,y hat可以视为一个正确的概率分布。
softmax运算不会改变未规范化的预测o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们可以用下式来选择最有可能的类别:
a r g m a x j y ^ j = a r g m a x j o j argmax_j\hat{y}_j=argmax_jo_j argmaxjy^j=argmaxjoj
尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型。

小批量样本的矢量化

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本X,其中特征维度(输入数量)为d,批量大小为n。此外,假设我们在输出中有q个类别。那么:
小批量样本的特征为 X ∈ R n × d 权重为 W ∈ R d × q 偏置为 b ∈ R 1 × q 小批量样本的特征为X∈R^{n×d}\\ 权重为W∈R^{d×q}\\ 偏置为b∈R^{1×q} 小批量样本的特征为XRn×d权重为WRd×q偏置为bR1×q
softmax回归的矢量计算表达式为:
O = X W + b Y ^ = s o f t m a x ( O ) O=XW+b\\ \hat{Y}=softmax(O) O=XW+bY^=softmax(O)
小批量样本的矢量化加快了X和W的矩阵-向量乘法。
由于X中的每一行代表一个数据样本,那么softmax运算可以按行执行:对于O的每一行,我们先对所有项进行幂运算,然后通过求和来对他们进行标准化。(XW+b的求和会使用广播机制,小批量的未规范化预测和输出概率都是n×q的矩阵)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/44177.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue项目打包成App

地址一 地址二 一、将项目开发完成后,在vue.config.js 文件中添加路径 publicPath:‘./’ 在router/index.js关闭路由的history模式(默认哈希) 二、npm run build,生成的dist文件目录 三、打开 HBuilder X 开发工具 新建 >…

SAMStable-Diffusion集成进化!分割、生成一切!AI绘画新玩法

自SAM「分割一切」模型推出之后,二创潮就开始了,有想法有行动!飞桨AI Studio开发者会唱歌的炼丹师就创作出SAM进化版,将SAM、Stable Diffusion集成,实现「分割」、「生成」能力二合一,并部署为应用&#xf…

吴恩达ChatGPT《LangChain Chat with Your Data》笔记

文章目录 1. Introduction2. Document Loading2.1 Retrieval Augmented Generation(RAG)2.2 Load PDFs2.3 Load YouTube2.4 Load URLs2.5 Load Notion 3. Document Splitting3.1 Splitter Flow3.2 Character Splitter3.3 Token Splitter3.4 Markdown Spl…

Cisco学习笔记(CCNA)——Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) 动态路由协议介绍 动态路由协议: 向路由表中添加远程网络 探索网络 更新和维护路由表 自主网络探索: 通过共享路由表信息路由器能探索到新的网络 动态路由协议的分类 内部网关协议(IGP) 适…

基于STM32设计的人体健康监护系统(华为云IOT)

一、设计需求 1.1 设计需求总结 根据需求,要求设计一款基于 STM32 的人体健康监护系统。采用系统模块化思路进行,将多个数模传感器收集到的数据和操作指令一并送至 STM32 中心处理器进行处理分析。 该系统可以实时监测被测者的心率、体温以及周围环境的温度,也同时可以通…

半导体自动化专用除静电设备的特点和功能

半导体自动化专用离子风机是一种用于半导体制造过程中的特殊风机设备。它通过产生带电粒子(离子)的气流来实现静电去除和除尘,以确保半导体制造环境的洁净和无尘。 以下是半导体自动化专用离子风机的一些特点和功能: 1. 静电去除…

【Vue3基础】计算属性

一、需求 二、代码 1、创建项目 创建项目: 1、 npm init vuelatest 2、一路回车 3、输入项目名,不要大写,如vue3bilibili 4、 cd vue3bilibili 5、 npm install 6、npm run dev启动,可以获取网址 2、App.vue文件中:…

Linux文件管理

WINDOWS/LINUX目录对比 Windows: 以多根的方式组织文件 C:\ D:\ E: Linux: 以单根的方式组织文件 / (根目录) Linux目录简介 /目录结构: FSH (Filesystem Hierarchy Standard) [rootlocalhost ~]# ls / bin dev lib media net root srv usr boot etc lib64 misc …

【Spring Boot Admin】介绍以及使用

介绍 概述 Spring Boot Admin是一个监控工具,旨在以一种漂亮且易于访问的方式可视化Spring Boot Actuators提供的信息。 主要功能点 显示应用程序的监控状态应用程序上下线监控查看 JVM,线程信息可视化的查看日志以及下载日志文件动态切换日志级别Http…

技术速览|Meta Llama 2 下一代开源大型语言模型

AI 使用大型语言模型(LLM)来理解和生成自然语言。LLM 可以从大量文本中学习并创建有关各种主题的文本,并可以完成比如编写代码、生成歌词、总结文章等任务。但有些 LLM 相关课程成本高昂且封闭,而现有的开放课程数量十分有限。这就…

机器学习深度学习——预备知识(上)

深大的夏令营已经结束,筛选入营的保研er就筛选了1/3,280多的入营总人数里面双非只有30左右。 最终虽然凭借机试拿到offer了,但是我感受到了自己的明显短板,比如夏令营的舍友就都有一篇核心论文,甚至还有SCI一区一作的。…

Docker数据管理和网络通信 dockerfile

Docker数据管理和网络通信 dockerfile 一:Docker 的数据管理1.数据卷2.数据卷容器 二:端口映射三:容器互联(使用centos镜像)四:Docker 镜像的创建1.基于现有镜像创建2&am…

证书文件无法生成.p12

做好的证书文件在生成.p12文件的过程中遇到了.p12选项置灰且无法选择并导出的情况 解决办法 起初认为生成的空白 CertificateSigningRequest 有问题,反反复复尝试几次制作后均无效; 而后发现问题出在了钥匙串访问的选项问题上 ... 将顶部菜单 tab 由"所有选项"切换至…

从不同的使用场景认识STag26

当你买下STag26时, 你买到的是什么? 如果你是商超生鲜区的经理, 你买到的是在促销旺季时的高效与安心。 你不用再担心价格没有及时更新, 导致水果蔬菜的滞销。 毕竟,STag26能够一键改价,实时更新&#x…

项目:点餐系统1

项目简介:实现一个http点餐系统服务器,能够支持用户在浏览器访问服务器获取餐馆首页,进行菜品以及订单管理。 具体模型如下: 用户分类: 管理员:进行订单以及菜品管理(菜品&订单的增删改查&a…

【C#】using

文章目录 global 修饰符using 别名结合“global 修饰符”和“using 别名”static 修饰符来源 global 修饰符 向 using 指令添加 global 修饰符意味着 using 将应用于编译中的所有文件(通常是一个项目)。 global using 指令被添加到 C# 10 中。 其语法为…

LiveGBS流媒体平台GB/T28181功能-视频直播流媒体平台分屏展示设备树分组树记录上次分屏播放记录

LiveGBS视频直播流媒体平台分屏展示设备树分组树记录上次分屏播放记录 1、分屏展示1.1、单屏1.2、四分屏1.3、九分屏1.4、十六分屏 2、分屏记录3、搭建GB28181视频直播平台 1、分屏展示 LiveGBS分屏页面支持,多画面播放,支持单屏、四分屏、九分屏、十六…

Java-API简析_java.net.Proxy类(基于 Latest JDK)(浅析源码)

【版权声明】未经博主同意,谢绝转载!(请尊重原创,博主保留追究权) https://blog.csdn.net/m0_69908381/article/details/131881661 出自【进步*于辰的博客】 因为我发现目前,我对Java-API的学习意识比较薄弱…

xcode15启动IOS远程调试

1.用数据线连接IPhone到macOS 2.打开xcode15,然后点击Window->Devices and Simulators 3.选中左边的Devices可看到已连接的IPhone,然后点击Connect via network使其选中. 选择后,左边的IPhone设备的右边出现一个地球图标,表示成功通过网络连接到IPhone 现在可断开数据线的…

GoogleLeNet Inception V1

文章目录 Inception V1Inception Modulenative versionInception module with dimensionality reduction1 * 1网络的降维说明 多个Softmax的输出整体结构 GoogleLeNet主要是把深度扩充到了22层,能增加网络深度而不用担心训练精度和梯度消失问题。 总共是提出了4个版…