【STM32定时器 TIM小总结】

STM32 TIM详解

  • TIM介绍
  • 定时器类型
    • 基本定时器
    • 通用定时器
    • 高级定时器
    • 常用名词
    • 时序图
      • 预分频时序
      • 计数器时序图
  • 定时器中断配置图
      • 定时器定时
  • 代码调试

TIM介绍

定时器(Timer)是微控制器中的一个重要模块,用于生成定时和延时信号,以及处理定时事件。在STM32系列微控制器中,定时器通常用于以下几个方面:

  1. 定时器功能: 定时器可以生成精确的定时信号,用于定时器中断、PWM(脉冲宽度调制)、计时等应用。它可以产生周期性的计数器溢出事件,也可以产生比较匹配和捕获事件。

  2. PWM生成: 定时器可以用于产生PWM信号,用于控制电机速度、调光、音频产生等应用。

  3. 计时功能: 定时器可以用于测量时间间隔,计算时间延迟,或者用于定时测量外部事件的频率。

  4. 输入捕获和输出比较: 定时器可以用于捕获外部事件的时间戳,也可以用于与比较器进行比较,并产生相应的事件。

在STM32系列微控制器中,定时器模块非常灵活,通常包括多个独立的定时器单元,每个定时器单元都有自己的计数器、自动重载寄存器、预分频器、比较器等功能。此外,定时器模块通常还支持多种工作模式、计数模式和时钟源选择,可以满足各种不同的应用需求。

  • 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断
  • 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时-钟下可以实现最大59.65s的定时(72MHZ/65535+1)*(65535+1)
    该公式后续会说明。
  • 不仅具备基本的定时中断功能,而且还包含内外时钟源选择、输入捕获、输出比较、编码器接口、主从触发模式等多种功能
  • 根据复杂度和应用场景分为了高级定时器通用定时器基本定时器三种类型

定时器类型

在这里插入图片描述

基本定时器

在这里插入图片描述

为何PSC+1?PSC为0则不分频即72MHz,为1 则分频率为36Mhz也即是72MHz/1+1 =36MHz,为2则分频为72Mhz/2+1=24MHz …最大值分频值为为65535 则72MHz/65535+1

默认情况下,定时器的输入时钟源(CK_INT)与定时器预分频器的输入时钟(CK_PSC)的时钟频率是相同的。

在STM32系列微控制器中,默认情况下,定时器的输入时钟源是微控制器的主时钟(一般是内部时钟源,比如HSI或者HSI16),而定时器预分频器的输入时钟则是来自于定时器输入时钟源。因此,如果没有对定时器的时钟源进行特别的配置,那么默认情况下,CK_INT和CK_PSC的时钟频率是相同的。

通用定时器

在这里插入图片描述

高级定时器

在这里插入图片描述

常用名词

CK_CNT_OV:时器计数器溢出频率,即定时器溢出的频率,通常以 Hz(赫兹)为单位。
CK_CNT: 定时器计数器时钟频率,即定时器计数器的输入时钟频率,通常以 Hz 为单位。
ARR : 自动重载寄存器的值,决定了定时器计数器溢出的周期。
CK_PSC: 定时器预分频器的输入时钟频率,通常也是定时器的输入时钟频率,在这里是72MHz,不需要我们处理。
PSC : 定时器预分频器的分频系数,决定了定时器计数器时钟频率。
这些参数的英文全称分别是:
- CK_CNT_OV: Timer Counter Overflow Frequency
- CK_CNT: Timer Counter Clock Frequency
- ARR: Auto-reload Register Value
- CK_PSC: Timer Prescaler Clock Frequency
- PSC: Prescaler Value
公式(重要 计算定时用):

输入时钟频率:CK_CNT = CK_PSC / (PSC + 1)
计数器溢出频率:CK_CNT_OV = CK_CNT / (ARR + 1)   
将CK_CNT= CK_PSC / (PSC + 1)带入得到下式= CK_PSC / (PSC + 1) / (ARR + 1)

时序图

预分频时序

在这里插入图片描述

计数器时序图

在这里插入图片描述

定时器中断配置图

在这里插入图片描述
需要一个一个配置,打通所在的线路配置即可。

定时器定时

计时1s如何设置计时?
1s=1/1Hz 即  t=1/f
f(频率)=计数器溢出频率;  t(时间)=1/f;  计时1s等于t=1/1(CK_CNT_OV) 故而f=CK_CNT_OV=1 ;此时CK_PSC / (PSC + 1) * (ARR + 1)=1   
又因为	CK_PSC 是预分频器的输入时钟频率,为72MHz,故而(PSC + 1) * (ARR + 1)=CK_PSC=72000000,凑PSC和ARR的值(但不要超过65535)使得式子成立即可。
这里PSC可以给7200-1  为什么-1?因为(PSC + 1) * (ARR + 1)式子PSC+1了,为了凑整数好计算取PSC=7200(注意:不要超过65535)。ARR+1=72000000/(PSC+1)=10000;

如此 1ms ,1 us的配置也就通过计算可以计算出了。

故而配置时基单元就可以这样写:

    TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;//配置为向上计数
	
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;//这里随便配置个其中的参数
	TIM_TimeBaseInitStructure.TIM_Period=10000;//Auto-Reload,重装值 ARR 其值不得超过65536
	TIM_TimeBaseInitStructure.TIM_Prescaler=7200;//预分频系数  根据上方公式计算  PSC,其值不得超过65536
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0;//这个是高级定时器才会用到的,通用随便给个直接给0
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);

在这里插入图片描述

代码调试

使用定时器,每1s进入一次定时器中断函数,完成Num++操作,并将它显示到OLED显示屏幕上。
Timer.c

#include "stm32f10x.h"                  // Device header
extern uint16_t Num; //Extern 声明变量在其他文件里(在main.c定义了),让编译器自己去找,这里引用的是main.c定义过的变量
void Timer_Init(void)
{
	
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);//TIM2,通用计时器使能
	TIM_InternalClockConfig(TIM2);//配置为内部时钟模式
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;//配置为向上计数
	//@72MHz  1s
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;//这里随便配置个其中的参数
	TIM_TimeBaseInitStructure.TIM_Period=10000;//Auto-Reload,重装值 ARR 其值不得超过65536
	TIM_TimeBaseInitStructure.TIM_Prescaler=7200;//预分频系数PSC,其值不得超过65536
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0;//这个是高级定时器才会用到的,通用随便给个直接给0
	TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
	
	TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);//使能定时器中断
	
	//NVIC配置
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//分组2
	NVIC_InitTypeDef NVIC_InitStructure;
	NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn;//配置为TIM2
	NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;//使能NVIC
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;//抢占优先级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;//响应优先级
	NVIC_Init(& NVIC_InitStructure);
	
	//一定记得启动定时器
	TIM_Cmd(TIM2,ENABLE);

}


void TIM2_IRQHandler(void)
{

	if(TIM_GetITStatus(TIM2,TIM_IT_Update)==SET)
	{
		Num++;
		Num%=100;//100重新计时
		TIM_ClearITPendingBit(TIM2,TIM_IT_Update);//清楚标志位
	}
}
	

main.c

#include "stm32f10x.h"                  // Device header
#include "OLED.h"  
#include "Timer.h"
uint16_t Num;//定义Num,在Timer引用
int main()
{
    OLED_Init();
	Timer_Init();
	while(1)
	{
		OLED_ShowNum(1,1,Num,4);
	}

}

现象:每1s加一次。一直加到99,再加清零 继续从0开始
在这里插入图片描述

个人总结复习使用,如果对你也有帮助,那可真是小舞的荣幸。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/462732.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Row)

沿水平方向布局容器。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 接口 Row(value?:{space?: number | string }) 从API version 9开始,该接口支持在…

HarmonyOS NEXT应用开发—Grid和List内拖拽交换子组件位置

介绍 本示例分别通过onItemDrop()和onDrop()回调,实现子组件在Grid和List中的子组件位置交换。 效果图预览 使用说明: 拖拽Grid中子组件,到目标Grid子组件位置,进行两者位置互换。拖拽List中子组件,到目标List子组件…

阿里云-零基础入门推荐系统 【特征工程】

文章目录 赛题介绍评价方式理解赛题理解制作特征和标签, 转成监督学习问题导包df节省内存函数训练和验证集的划分获取历史点击和最后一次点击读取训练、验证及测试集读取召回列表读取各种Embedding读取文章信息读取数据对训练数据做负采样将召回数据转换成字典制作与…

Java后端八股-------并发编程

图中的 synchronized方法如果没有锁,那么可能会有超卖,数据错误等情况。 加锁之后会按顺序售卖。 synchronized的底层是monitor。 线程没有竞争关系的时候,引入了轻量级锁,当需要处理竞争关系的时候一定要用到重量级锁(线程的…

图像处理ASIC设计方法 笔记10 插值算法的流水线架构

(一) 三次插值算法实现的图像旋转设计的流水线架构 传统上,三次插值算法实现的图像旋转设计需要三块一样的处理资源,为了节约资源,采用流水线设计,简单来讲就是三次插值算法共用一块资源,优化这…

Android Studio 打包 Maker MV apk 详细步骤

一.使用RPG Make MV 部署项目,获取项目文件夹 这步基本都不会有问题: 二.安装Android Studio 安装过程参考教材就行了: https://blog.csdn.net/m0_62491877/article/details/126832118 但是有的版本面板没有Android的选项(勾…

OpenCV 环境变量参考

返回:OpenCV系列文章目录(持续更新中......) 上一篇: OpenCV4.9.0配置选项参考 下一篇:OpenCV4.9.0配置选项参考 引言: OpenCV是一个广泛使用的图像和视频处理开源库,拥有丰富的图像算法和函…

ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件)

ChatGPT编程—实现小工具软件(批量替换文本、批量处理图像文件) 今天借助[小蜜蜂AI][https://zglg.work]网站的ChatGPT编程实现一个功能:批量处理文件及其内容,例如批量替换文本、批量处理图像文件等。 环境:Pycharm 2021 系统&#xff1a…

DDR协议基础进阶(三)——(基本功能、初始化、MR寄存器)

DDR协议基础进阶(三)——(基本功能、初始化、MR寄存器) 一、DDR基本功能 DDR基本功能主要包括: 8-bit prefetch预取——8-bit,是指8位数据,即8倍芯片位宽的数据。由于DDR内部数据传输是32bit…

NVENC 视频编码器 API 编程指南 ( 中文转译 )

基于 NVIDIA Kepler™ 和更高版本 GPU 架构的 NVIDIA GPU 包含基于硬件的 H.264/HEVC/AV1 视频编码器(以下简称 NVENC)。NVENC 硬件采用 YUV/RGB 作为输入,并生成符合H.264/HEVC/AV1 标准的视频比特流。可以使用 NVIDIA 视频编解码器 SDK 中提…

柚见十三期(优化)

前端优化 加载匹配功能与加载骨架特效 骨架屏 : vant-skeleton index.vue中 /** * 加载数据 */ const loadData async () > { let userListData; loading.value true; //心动模式 if (isMatchMode.value){ const num 10;//推荐人数 userListData await myA…

GiT: Towards Generalist Vision Transformer through Universal Language Interface

GiT: Towards Generalist Vision Transformer through Universal Language Interface 相关链接:arxiv github 关键字:Generalist Vision Transformer (GiT)、Universal Language Interface、Multi-task Learning、Zero-shot Transfer、Transformer 摘要 …

Java 学习和实践笔记(38):接口中的默认方法

JAVA8以后,我们也可以在接口中直接定义静态方法的实现——以前是不行的。这个静态方法直接从属于接口(接口也是类,一种特殊的类),可以通过接口名调用。 如果子类中定义了相同名字的静态方法,那就是完全不同的方法了,直…

PyCharm中如何使用不同的虚拟环境

1. 简介 有些项目用老的运行环境,而有些项目用新的运行环境,那么我们在运行这些代码(比如跑对比实验的时候)如何进行切换呢,这时候就可以使用虚拟环境啦 2. 虚拟环境的创建 首先启动Anaconda Prompt 并在其中执行如…

【PyTorch】基础学习:在Pycharm等IDE中打印或查看Pytorch版本信息

【PyTorch】基础学习:在Pycharm等IDE中打印或查看Pytorch版本信息 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1…

HTML5CSS3提高导读

HTML5CSS3提高导读 2024/2/20 HTML5 的新增特性主要是针对于以前的不足,增加了一些新的标签、新的表单和新的表单属性等。 这些新特性都有兼容性问题,基本是 IE9 以上版本的浏览器才支持,如果不考虑兼容性问题,可以大量使用这 …

项目实践《招聘网站数据爬取》

文章目录 一、模块导入部分二、预定义参数部分三、函数定义部分:send_get(page)四、函数定义部分:process_data(data)五、函数定义部分:responsibility(job_url)六、函数定义部分:while_data()七、主程序执行部分:八、…

2核4g服务器够用吗?

2核4G服务器够用吗?够用。阿腾云以2核4G5M服务器搭建网站为例,5M带宽下载速度峰值可达640KB/秒,阿腾云以搭建网站为例,假设优化后平均大小为60KB,则5M带宽可支撑10个用户同时在1秒内打开网站,并发数为10&am…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:UIExtensionComponent (系统接口))

UIExtensionComponent用于支持在本页面内嵌入其他应用提供的UI。展示的内容在另外一个进程中运行,本应用并不参与其中的布局和渲染。 通常用于有进程隔离诉求的模块化开发场景。 说明: 该组件从API Version 10开始支持。后续版本如有新增内容&#xff0…

政安晨:【深度学习处理实践】(八)—— 表示单词组的两种方法:集合和序列

咱们接着这个系列的上一篇文章继续: 政安晨:【深度学习处理实践】(七)—— 文本数据预处理https://blog.csdn.net/snowdenkeke/article/details/136697057 机器学习模型如何表示单个单词,这是一个相对没有争议的问题…
最新文章