redis和rabbitmq实现延时队列

redis和rabbitmq实现延时队列

  • 延迟队列使用场景
  • Redis中zset实现延时队列
  • Rabbitmq实现延迟队列

延迟队列使用场景

1. 订单超时处理
延迟队列可以用于处理订单超时问题。当用户下单后,将订单信息放入延迟队列,并设置一定的超时时间。如果在超时时间内用户未支付订单,消费者会从延迟队列中获取到该订单,并执行相应的处理操作,如取消订单、释放库存等。

2. 优惠券过期提醒
延迟队列可以用于优惠券的过期提醒功能。将即将过期的优惠券信息放入延迟队列,并设置合适的延迟时间。当延迟时间到达时,消费者将提醒用户优惠券即将过期,引导用户尽快使用。

3. 异步通知与提醒
延迟队列可以用于异步通知和提醒功能。例如,当用户完成某个操作后,系统可以将相关通知消息放入延迟队列,并设置一定的延迟时间,以便在合适的时机发送通知给用户。

Redis中zset实现延时队列

1. 创建延迟队列服务类

  • 创建一个延迟队列的服务类,例如DelayQueueService,用于操作Redis中的ZSet。这个服务类需要完成以下功能:
  • 将消息放入延迟队列:将消息作为元素添加到ZSet中,设置对应的延迟时间作为分数。轮询并处理已到期的消息:定时任务或者消息消费者轮询检查ZSet中的元素,获取到达指定时间的消息进行处理。删除已处理的消息:处理完消息后,从ZSet中将其删除。
@Service
public class DelayQueueService {
    private static final String DELAY_QUEUE_KEY = "delay_queue";


    @Autowired
    private RedisTemplate<String, String> redisTemplate;

    public void addToDelayQueue(String message,long delayTime){
        redisTemplate.opsForZSet().add(DELAY_QUEUE_KEY,message,System.currentTimeMillis()+delayTime);
    }

    public void processDelayedMessage(){
        //reverseRangeByScore 从高到低
        //rangeByScore 从低到高
        Set<String> messages = redisTemplate.opsForZSet().rangeByScore(DELAY_QUEUE_KEY, 0, System.currentTimeMillis());
        for(String message:messages){
            //处理消息
            System.out.println(message);
            redisTemplate.opsForZSet().remove(DELAY_QUEUE_KEY,message);
        }

    }
}

2. 配置定时任务或消息消费者
使用Spring Boot的定时任务或消息队列框架,定时调用延迟队列服务类的轮询方法或监听指定的消息队列,可以将轮训粒度放到1s一次。

@Component
public class DelayQueueSchedule {
    @Autowired
    private DelayQueueService delayQueueService;


    // 每隔一段时间进行轮询并处理延迟消息
    @Scheduled(fixedDelay = 1000)
    public void pollAndProcessDelayedMessages() {
        delayQueueService.pollAndProcessDelayedMessages();
    }
}

然后在启动类上通过@EnableScheduling注解开启任务调度能力。

缺点:
使用ZSET(有序集合,Sorted Set)来实现延迟任务调度(如订单超时取消)是一种有效的方法,但它也有一些缺点和限制:

  1. 内存消耗:ZSET 在Redis中是一个有序集合,它需要占用一定的内存来存储成员和分数。如果你需要存储大量的延迟任务,可能会导致内存消耗较大。这可能会对Redis服务器的性能和成本产生影响,特别是在大规模应用中。
  2. 不适用于大规模延迟任务:ZSET 可以处理相对较小数量的延迟任务,但当需要管理大规模延迟任务队列时,可能会导致性能下降。在这种情况下,需要考虑更高效的延迟队列解决方案,例如使用分布式消息队列。
  3. 无法动态修改延迟时间: 一旦将任务添加到ZSET中,你不能轻松地修改任务的延迟时间。如果需要在任务已经添加后更改延迟时间,可能需要复杂的操作。
  4. 没有重试机制:ZSET 只能用于一次性延迟任务,无法自动处理任务失败后的重试。如果任务在执行时失败,你需要自己实现重试逻辑。
  5. 没有持久化: Redis是内存数据库,如果Redis服务器重启或发生故障,已添加的延迟任务数据将丢失。虽然可以通过Redis持久化机制来部分解决这个问题,但仍然存在一定风险。
  6. 复杂性增加: 使用ZSET来管理延迟任务队列需要编写复杂的代码来处理任务的添加、检索和删除。这可能增加应用程序的复杂性。

Rabbitmq实现延迟队列

死信,顾名思义就是无法被消费的消息。一般来说,producer 将消息投递到 broker 或者直接到queue 里了,consumer 从 queue 取出消息进行消费,但某些时候由于特定的原因导致queu 中的某些消息无法被消费,这样的消息如果没有后续的处理,就变成了死信,有死信自然就有了死信队列。

列出2种实现方式。
(1)使用Time To Live(TTL) + Dead Letter Exchanges(DLX)死信队列组合实现延迟队列的效果。
(2)使用RabbitMQ官方延迟插件rabbitmq_delayed_message_exchange,实现延时队列效果。

由于TTL(生存时间)过期导致的死信,就是我们实现延迟队列的的方式。
我们需要声明如下形式的交互机和队列,以及对应的routing key,并进行绑定:
请添加图片描述
上图绑定的代码如下所示

@Configuration
public class DeadQueueConfig {
    //普通交换机及队列
    public static final String X_EXCHANGE = "X";
    public static final String QUEUE_A = "QA";
    public static final String QUEUE_B = "QB";
    //死信交换机及队列
    public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
    public static final String DEAD_LETTER_QUEUE = "QD";
    //通用队列
    public static final String QUEUE_C = "QC";


    // 声明 xExchange
    @Bean("xExchange")
    public DirectExchange xExchange() {
        return new DirectExchange(X_EXCHANGE);
    }

    //声明队列 A ttl 为 10s 并绑定到对应的死信交换机
    @Bean("queueA")
    public Queue queueA() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        //声明队列的 TTL
        args.put("x-message-ttl", 10000);
        return QueueBuilder.durable(QUEUE_A).withArguments(args).build();
    }
    //声明队列A绑定X交换机  路由为XA
    @Bean
    public Binding queueABingX(@Qualifier("queueA") Queue queueA,
                               @Qualifier("xExchange") DirectExchange xExchange){
        return BindingBuilder.bind(queueA).to(xExchange).with("XA");
    }

    //声明队列 B ttl 为 40s 并绑定到对应的死信交换机
    @Bean("queueB")
    public Queue queueB() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        //声明队列的 TTL
        args.put("x-message-ttl", 40000);
        return QueueBuilder.durable(QUEUE_B).withArguments(args).build();
    }

    //声明队列 B 绑定 X 交换机
    @Bean
    public Binding queuebBindingX(@Qualifier("queueB") Queue queue1B,
                                  @Qualifier("xExchange") DirectExchange xExchange) {
        return BindingBuilder.bind(queue1B).to(xExchange).with("XB");
    }

    //声明通用队列C 不设ttl,由消费者决定ttl
    @Bean("queueC")
    public Queue queueC() {
        Map<String, Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由 key
        args.put("x-dead-letter-routing-key", "YD");
        return QueueBuilder.durable(QUEUE_C).withArguments(args).build();
    }
    // 声明队列 C 绑定 X 交换机
    @Bean
    public Binding queuecBindingX(@Qualifier("queueC") Queue queueC,
                                  @Qualifier("xExchange") DirectExchange xExchange) {
        return BindingBuilder.bind(queueC).to(xExchange).with("XC");
    }

    // 声明 死信队列交换机
    @Bean("yExchange")
    public DirectExchange yExchange() {
        return new DirectExchange(Y_DEAD_LETTER_EXCHANGE);
    }
    //声明死信队列 QD
    @Bean("queueD")
    public Queue queueD() {
        return new Queue(DEAD_LETTER_QUEUE,true);
    }
    //声明死信队列 QD 绑定关系
    @Bean
    public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD,
                                        @Qualifier("yExchange") DirectExchange yExchange) {
        return BindingBuilder.bind(queueD).to(yExchange).with("YD");
    }

}

其中,QD为死信队列。当QA和QB队列中的消息,达到设定的TTL(10s和40s)后,将进入指定的死信队列QD。该方法缺点就是一个TTL对应一个队列

其中的QC作为通用的队列,即在消费者处指定消息对应的TTL,TTL过期后转入死信队列。使用该通用队列可以避免每增加一个新的时间需求,就要新增一个队列的问题。但该方法由于队列先进先出的性质,会导致一定的问题:

即先发出一个TTL为10s的消息a,进入队列;再马上发出一个TTL为2s的消息b,进入队列。由于队列的性质,会在消息a的TTL结束后,a进入死信队列后,b才会进入死信队列。而不是根据TTL的时间,b比a先进入死信队列。

声明交换机、队列,并绑定成功后,编写死信队列消费者代码;

@Component
@Slf4j
public class DeadQueueConsumer {

    @RabbitListener(queues = "QD")
    public void receiveD(Message message, Channel channel) throws IOException {
        String msg = new String(message.getBody());
        log.info("当前时间:{},收到死信队列信息:{}", new Date().toString(), msg);
    }
}

在controller中编写生产者代码,进行测试:

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @GetMapping("/sendMsg/{message}")
    public String sendMsg(@PathVariable String message){
        log.info("当前时间:{},发送一条信息给两个 TTL 队列:{}", new Date(), message);
        rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: " + message);
        rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: " + message);
        return "finish";
    }

结果如图:请添加图片描述
测试通用队列QC的效果:

@GetMapping("/send/{message}/{ttlTime}")
    public void sendMsg(@PathVariable String message, @PathVariable String ttlTime) {
        rabbitTemplate.convertAndSend("X", "XC", message, correlationData -> {
            correlationData.getMessageProperties().setExpiration(ttlTime);
            return correlationData;
        });
        log.info("当前时间:{},发送一条时长{}毫秒 TTL 信息给队列 C:{}", new Date(), ttlTime, message);
    }

结果如下图
请添加图片描述

可以看到, 两条消息几乎同时到达死信队列,因为TTL为2s的消息由于被堵在TTL为10s的消息后导致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/470648.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据仓库系列总结

一、数据仓库架构 1、数据仓库的概念 数据仓库&#xff08;Data Warehouse&#xff09;是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合&#xff0c;用于支持管理决策。 数据仓库通常包含多个来源的数据&#xff0c;这些数据按照主题进行组织和存储&#x…

AnyGo for Mac最新激活版:位置模拟软件打破地域限制

AnyGo for Mac&#xff0c;一款专为Mac用户打造的位置模拟软件&#xff0c;让您能够轻松打破地域限制&#xff0c;畅享无限可能。 软件下载&#xff1a;AnyGo for Mac v7.0.0最新激活版 通过AnyGo&#xff0c;您可以随时随地模拟出任何地理位置&#xff0c;无论是国内热门景点还…

【Godot4.2】2D导航02 - AstarGrid2D及其使用方法

概述 AstarGrid2D是Godot4.0新增的A*寻路辅助类型。可以看做是Astar2D的加强版。它允许你通过设置其size和cell_size属性来创建一个虚拟的网格。 并使用set_point_solid()这样的方法来在指定位置创建障碍物。 AstarGrid2D的好处是你不再需要手动的添加点以及点与点之间的连接…

vue3+element Plus form 作为子组件,从父组件如何赋值?

刚开始接触vue3时&#xff0c;碰到一个很low的问题&#xff0c;将form作为子组件&#xff0c;在页面中给form表单项输入内容&#xff0c;输入框不显示值&#xff0c;知道问题出在哪&#xff0c;但因为vue3组合式api不熟悉&#xff0c;不知从哪下手... 效果图&#xff1a; 父组…

ubuntu下samba匿名读写服务器

目的&#xff1a; 局域网内&#xff0c;ubuntu下&#xff0c;创建SAMBA文件共享服务器。匿名读写权限。为了开发项目组文件共享传输方便。 环境&#xff1a; X86_64电脑一台。 操作系统&#xff1a; Ubuntu 20.04 LTS 64位。 安装samba $ sudo apt-get install samba创建…

FPGA通过I2C控制AT24C64

文章目录 前言一、代码设计框图二、IIC_drive模块设计2.1、模块接口&#xff1a;2.2、代码功能描述&#xff1a;2.3、IIC协议实现过程&#xff1a; 三、EEPROM_ctrl模块设计3.1、模块接口&#xff1a;3.2、代码功能描述 四、EEPROM_drive模块五、iic_top模块 前言 继上一篇FPG…

计算机毕业设计-基于深度学习的验证码识别方法设计与实现

概要 验证码是一个系统区分人类与非人类行为的有效方式。验证码识别技术能够使计算机程序输入正确的验证码&#xff0c;伪装成人类用户进入目标系统。另一方面&#xff0c;系统方面需要考虑破解验证码识别技术&#xff0c;修补验证方式的可能漏洞&#xff0c;使之能够更有效地区…

[Uni-app] 微信小程序的圆环进度条

效果图&#xff1a; 组件完整代码如下&#xff1a; <template><view class"base-style":style"position: relative;width: diameter px;height: diameter px;display: flex;flex-direction: row;background-color: bgColor ;"><!…

RK3588+FPGA+AD+AI的智能数据采集与分析解决方案

RK3588是瑞芯微新一代旗舰级高端处理器&#xff0c;具有高算力、低功耗、超强多媒体、丰富数据接口等特点。搭载四核A76四核A55的八核CPU和ARM G610MP4 GPU&#xff0c;内置6.0TOPs算力的NPU。 RK3588复旦微FPGA方案 有五大技术优势 1. 内置多种功能强大的嵌入式硬件引擎&…

【Linux(1)】Linux的一些基本指令(补充上一篇)

思维导图 学习内容 通过上面的学习目标&#xff0c;我们可以列出要学习的内容&#xff1a; linux的一些指令&#xff1a;cd mkdir cp touch which rm cat alias 一些基本的概念&#xff1a;指令的概念&#xff0c;用户家目录是什么...... 一、Linux的一些指令 1.1 重新认识…

基于Spring Boot共享单车信息系统的设计与实现

摘 要 快速发展的社会中&#xff0c;人们的生活水平都在提高&#xff0c;生活节奏也在逐渐加快。为了节省时间和提高工作效率&#xff0c;越来越多的人选择利用互联网进行线上打理各种事务&#xff0c;然后线上管理系统也就相继涌现。与此同时&#xff0c;人们开始接受方便的生…

Opencv入门---绘图篇

目录 一、cv.line() 二,cv.cricle() 三&#xff0c;cv2.rectangle() 一、cv.line() cv.line()是 OpenCV 库中用于在图像上绘制直线的函数。它可以在图像上绘制一条直线&#xff0c;指定直线的起始点和结束点。 函数的语法如下&#xff1a; cv.line(img, pt1, pt2, color, th…

[LLM] 大模型基础|预训练|有监督微调SFT | 推理

现在的大模型在进行预训练时大部分都采用了GPT的预训练任务&#xff0c;即 Next token prediction。 要理解大语言模型&#xff08;LLM&#xff09;&#xff0c;首先要理解它的本质&#xff0c;无论预训练、微调还是在推理阶段&#xff0c;核心都是next token prediction&#…

dockerfile文件编写

文章目录 dockerfile是什么Dockerfile常用指令1. FROM2. MAINTAINER3. WORKDIR4.COPY5.ADD6.ENV7.RUN8.CMD9.ENTRYPOINT dockerfile是什么 Dockerfile是一个文本配置文件&#xff0c;用于自动化构建Docker镜像。 Dockerfile是由一系列命令和参数构成的脚本&#xff0c;它指导D…

zookeeper快速入门(合集)

zookeeper作为一个分布式协调框架&#xff0c;它的创建就是为了方便或者简化分布式应用的开发。除了服务注册与发现之外&#xff0c;它还能够提供更多的功能&#xff0c;但是对于入门来说&#xff0c;看这一篇就够了。后续会讲zookeeper的架构设计与原理&#xff0c;比如zookee…

resize-observer源码解读

resize-observer github 地址&#xff1a;https://github.com/devrelm/resize-observer 本地启动 npm installnpm startnode 18.16.0 (npm 9.5.1) 启动失败报错 node:internal/crypto/hash:71this[kHandle] new _Hash(algorithm, xofLen);^Error: error:0308010C:digital …

1、初识JVM

一、JVM是什么&#xff1f; JVM的英文全称是 Java Virtual Machine&#xff0c;其中文译名为Java虚拟机。它在本质上就是是一个运行在计算机上的程序&#xff0c;他的职责是运行Java字节码文件。 JVM执行流程如下 二、JVM有哪些功能&#xff1f; 2.1 解释和运行 对字节码文…

【Web技术应用基础】HTML(1)——简单界面

题目1&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title>Hello world</title></head> <body bgcolor"F6F3D6"><!--用HTML语言向世界打声招呼吧&#xff01;--><h1 align&…

电脑怎么快速重装系统win7

电脑重装系统是解决软件问题、提升系统性能的常用手段。随着技术发展,一键重装系统成为了许多用户的首选方法,因为它简化了繁琐的操作步骤,节省了大量时间。尤其是对于非技术人员来说,一键重装提供了一种快速高效且不易出错的系统安装方式。如果你需要快速重装win7,那么可…

Spring Boot 自动化单元测试类的编写过程

前言 Web环境模拟测试 企业开发不仅要保障业务层与数据层的功能安全有效&#xff0c;也要保障表现层的功能正常。但是我们一般对表现层的测试都是通过postman手工测试的&#xff0c;并没有在打包过程中代码体现表现层功能被测试通过。那么能否在测试用例中对表现层进行功能测…