Redis服务优化

目录

一.Rde高可用

 二.Rdies持久化

 2.1持久化的功能

  2.2Redis 提供两种方式进行持久化

三.RDB持久化

  3.1触发条件

 3.1.1手动触发

 3.1.2自动触发

 3.1.3其他自动触发机制

 3.1.4执行流程

 3.1.5启动时加载

 四.AOF持久化

 4.1开启AOF

 4.2执行流程

  4.2.1命令追加(append)

 4.2.2文件写入(write) 和文件同步 (sync)

 4.2.3文件重写 (rewrite)

 4.2.4文件重写之所以能够压缩AOF文件的原因

4.​3文件重写的触发,分为手动触发​和​自动触发 

4.4文件重写的流程

4.5启动时加载

五.RDB化和AOF的优缺点 

5.1RDB持久化的优缺点

 5.2 AOF持久化的优缺点

六.Redis性能管理

6.1查看Redis内存使用

6.2内存碎片率

 6.3内存使用率

 6.4内回收key

  一.Rde高可用

        在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。

        但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

        在Redis中,实现高可用的技术主要包括持久化、主从复制、哨兵和集群,下面分别说明它们的作用,以及解决了什么样的问题

 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
 
主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
 
哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
 
集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方

 二.Rdies持久化

 2.1持久化的功能

        Redis是内存数据库,数据都是存储在内存中,为了避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

  2.2Redis 提供两种方式进行持久化

        RDB 持久化(Redis DataBase):原理是将 Reids在内存中的数据库记录定时保存到磁盘

        AOF 持久化(append only file):原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

总结:由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

三.RDB持久化

        RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

  3.1触发条件

RDB持久化的触发分为手动触发和自动触发两种

 3.1.1手动触发

save命令和​bgsave​命令都可以生成RDB文件。​​​

​​save命令会​阻塞Redis服务器进程​,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。​​

​​而bgsave命令会创建一个子进程,由​子进程来负责创建RDB文件​,父进程(即Redis主进程)则继续处理请求。​​

​​bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要​杜绝save的使用​

 3.1.2自动触发

  • 在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。​​
  • 自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
#---------219行以下三个save条件满足任意一个时,都会引起bgsave的调用-----
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
#---------242行是否开启RDB文件压缩---------------------------------------
rdbcompression yes
#---------254行指定RDB文件名----------------------------------------------
dbfilename dump.rdb
#---------264行指定RDB文件和AOF文件所在目录-------------------------------
dir /var/lib/redis/6379

 3.1.3其他自动触发机制

除了 savemn 以外,还有一些其他情况会触发bgsave:

  • 在主从复制场景下,如果​从节点执行全量复制操作​,则主节点会执行bgsave命令,并将rdb文件发送给从节点。​​
  • 执行shutdown命令​时,自动执行rdb持久化。

 3.1.4执行流程

  Redis父进程首先判断 :当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行,则bgsave命令直接返回bgsave/bgrewriteaof 的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题

父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令

父进程fork后,bgsave 命令返回”Background saving started" 信息并不再阻塞父进程,并可以响应其他命令

子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换

子进程发送信号给父进程表示完成,父进程更新统计信息

 3.1.5启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于A0F的优先级更高,因此当AOF开启时,Redis会优先载入AOF文件来恢复数据;只有当A0F关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

 四.AOF持久化

  • RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
  • 与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

 4.1开启AOF

  • Redis服务器默认开启RDB,关闭AOF的, 要开启AOF,需要在/etc/redis/6379.conf配置文件中配置。

 

vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定A0F文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
 
/etc/init.d/redis_6379 restart   重启服务

 4.2执行流程

由于需要记录Redis的每条写命令,因此A0F不需要触发,AOF的执行流程如下

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_ buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite): 定期重写AOF文件,达到压缩的目的。

  4.2.1命令追加(append)

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。在A0F文件中,除了用于指定数据库的select命令 (如select0为选中0号数据库) 是由Redis添加的,其他都是客户端发送来的写命令。

 4.2.2文件写入(write) 和文件同步 (sync)

 Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

AOF缓存区的同步文件策略存在三种同步方式,它们分别是:

vim /etc/redis/6379.conf
 
---729---
● appendfsync always:
解释:命令写入aof_ buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。
	 这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,
	 严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
 
● appendfsync no:
解释:命令写入aof_ buf后调用系统write操作,不对AOF文件做fsync同步;
	 同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,
	 且缓冲区中堆积的数据会很多,数据安全性无法保证。
 
● appendfsynceverysec:
解释:命令写入aof_ buf后调用系统write操作,write完成后线程返回; 
	 fsync同步文件操作由专门的线程每秒调用一次。
	 everysec是前述两种策略的折中,是性能和数据安全性的平衡,
	 因此是Redis的默认配置,也是我们推荐的配置。

 4.2.3文件重写 (rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大:过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入:因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

 4.2.4文件重写之所以能够压缩AOF文件的原因

过期的数据不再写入文件​​

无效的命令不再写入文件​​​,如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(sadd myset v1, del myset)等。​​

多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

4.​3文件重写的触发,分为手动触发​和​自动触发 

手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。​​

自动触发:通过设置​auto-aof-rewrite-min-size​选项和​auto-aof-rewrite-percentage​选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
----771----
auto-aof-rewrite-percentage 100
#当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
auto-aof-rewrite-min-size 64mb
#当前A0F文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWR ITEAOF

4.4文件重写的流程

​​​​关于文件重写的流程,有两点需要特别注意:
1.​​​重写由父进程fork子进程进行;​​​
2.重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

 

 Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。

父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。

父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。

由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。

子进程根据内存快照,按照命令合并规则写入到新的AOF文件。

子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。

父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。

使用新的AOF文件替换老文件,完成AOF重写。

4.5启动时加载

当AOF开启时,Redis启 动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。

当AOF开启,但AOF文 件不存在时,即使RDB文件存在也不会加载。

Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整 (机器突然宕机等容易导致文件尾部不完整),且aof-load- truncated参数开启,则日志中会输出警告,Redis 忽略掉AOF文件的尾部,启动成功。
aof-load-truncated参数默认是开启的。

五.RDB化和AOF的优缺点 

5.1RDB持久化的优缺点

优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比, RDB最 重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。 对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力。

 5.2 AOF持久化的优缺点

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。
对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题。
AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的I0压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对Redis主进程性能的影响会更大。

六.Redis性能管理

6.1查看Redis内存使用

----- 查看Redis内存使用 -----
 
redis-cli -h 192.168.40.172 -p 6379
192.168.40.172:6379> info memory

6.2内存碎片率

操作系统分配的内存值used_ memory_ rss除以Redis使用的内存值used_ memory计算得出内存碎片是由操作系统低效的分配/回收物理内存导致的 (不连续的物理内存分配)

 

跟踪内存碎片率对理解Redis实例的资源性能是非常重要的:

        内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低

        内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150号, 其中50号是内存碎片率。需要在redis-cli工具.上输入shutdown save命令,并重启Redis 服务器

        内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少Redis内存占用

 6.3内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换

避免内存交换发生的方法:

        针对缓存数据大小选择安装Redis 实例

        尽可能的使用Hash数据结构存储

        设置key的过期时间

 6.4内回收key

保证合理分配redis有限的内存资源

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除

 配置文件中修改maxmemory- policy属性值:

vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction
●volatile-lru :使用LRU算法从已设置过期时间的数据集合中淘汰数据
●volatile-ttl :从已设置过期时间的数据集合中挑选即将过期的数据淘汰
●volatile-random :从已设置过期时间的数据集合中随机挑选数据淘汰
●allkeys-lru :使用LRU算法从所有数据集合中淘汰数据
●allkeys-random :从数据集合中任意选择数据淘汰
●noenviction :禁止淘汰数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/47195.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读22】Label prompt for multi-label text classification

论文相关 论文标题:Label prompt for multi-label text classification(基于提示学习的多标签文本分类) 发表时间:2023 领域:多标签文本分类 发表期刊:Applied Intelligence(SCI二区&#xff0…

FPGA设计时序分析二、建立/恢复时间

目录 一、背景知识 1.1 理想时序模型 1.2 实际时序模型 1.2.1 时钟不确定性 1.2.2 触发器特性 二、时序分析 2.1 时序模型图 ​2.2 时序定性分析 一、背景知识 之前的章节提到,时钟对于FPGA的重要性不亚于心脏对于人的重要性,所有的逻辑运算都离开…

Python 进阶(一):PyCharm 下载、安装和使用

❤️ 博客主页:水滴技术 🌸 订阅专栏:Python 入门核心技术 🚀 支持水滴:点赞👍 收藏⭐ 留言💬 文章目录 一、下载 PyCharm二、安装 PyCharm三、创建项目四、界面汉化五、实用技巧5.1、使用快捷…

EtherNet/IP转 Modbus网关实现AB PLC控制变频器案例

捷米特JM-EIP-RTU网关 Modbus转ETHERNET/IP用于将多个变频器连接到Ethernet/Ip主网,以便森兰变频器可以由AB PLC控制。 配备专用于JM-EIP-RTU网关的EDS文件,AB PLC主站可以控制森兰逆变器从站。 使用 AB 系统的配置方法 1, 运行 RSLogix 500…

OpenGl中的VAO、VBO与EBO

文章目录 VBO(顶点缓冲区对象)VBO的使用 EBO(索引缓冲对象)EBO的使用 VAO(顶点数组对象)VAO的使用 三者的区别someting。。。 哎,很离谱,上个月学learnopengl学到一半跑去看庄懂老师的视频,结果该还的东西迟早得还,再打开之前的工…

微信小程序使用ECharts的示例详解

目录 安装 ECharts 组件使用 ECharts 组件图表延迟加载 echarts-for-weixin 是 ECharts 官方维护的一个开源项目,提供了一个微信小程序组件(Component),我们可以通过这个组件在微信小程序中使用 ECharts 绘制图表。 echarts-fo…

蓝桥杯专题-真题版含答案-【贪吃蛇长度】【油漆面积】【绘制圆】【高次方数的尾数】

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 👉关于作者 专注于Android/Unity和各种游…

Ansible 自动化运维

目录 ansible 环境安装部署ansible 命令行模块inventory 主机清单 Ansible是一个基于Python开发的配置管理和应用部署工具,现在也在自动化管理领域大放异彩。它融合了众多老牌运维工具的优点,Pubbet和Saltstack能实现的功能,Ansible基本上都可…

Wireshark抓包分析教程(ubuntu版本)

安装 first,多亏我们的C知道,成功安装了wireshark, Steps are as following: 添加wireshark的软件源(PPA:personal package archive(档案)) sudo apt-add-repository ppa:wireshark-dev/stable ppa:wireshark-dev/stable 是一个…

PHP数组转对象和对象转数组

PHP数组转对象和对象转数组 <?php function array_to_object($arr){$obj new stdClass();foreach ($arr as $key > $val) {if (is_array($val) || is_object($val)) {$obj->$key array_to_object($val);} else {$obj->$key $val;}}return $obj; } function o…

Kyuubi入门简介

一、官方简介 HOME — Apache Kyuubi 二、概述 1、一个企业级数据湖探索平台 2、一个高性能的通用JDBC和SQL执行引擎 3、一个基于spark的查询引擎服务 三、优点 1、提供hiveserver2查询spark sql的能力&#xff0c;查询效率更为高效&#xff0c;首次构建连接时会持续保持连…

洛必达法则和分部积分的应用之计算数学期望EX--概率论浙大版填坑记

如下图所示&#xff0c;概率论与数理统计浙大第四版有如下例题&#xff1a; 简单说就是&#xff1a;已知两个相互独立工作电子装置寿命的概率密度函数&#xff0c;将二者串联成整机&#xff0c;求整机寿命的数学期望。 这个题目解答中的微积分部分可谓是相当的坑爹&#xff0c;…

DDL\DML

查询字段 1、查询指定字段 select 字段1, 字段2 ,...] from 表名; select ename, sal from emp; select ename from emp; 2、查询全部字段 select * from 表名; select * from emp; 条件查询 使用 where 语句&#xff0c;放在 from 后 select * from emp where 条件…

PostgreSQL 的事务管理和并发控制机制解析

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

Prompt Engineering论文梳理(主要为2022年)

AutoPrompt &#xff08;EMNLP2020&#xff09; Shin T, Razeghi Y, Logan IV R L, et al. Autoprompt: Eliciting knowledge from language models with automatically generated prompts[J]. arXiv preprint arXiv:2010.15980, 2020. 基本架构&#xff0c;original input t…

关联分析-Apriori

关联分析-Apriori 1. 定义 关联分析就是从大规模数据中&#xff0c;发现对象之间隐含关系与规律的过程&#xff0c;也称为关联规则学习。 2. 相关概念 2.1 事务、项与项集 订单号购买商品0001可乐、薯片0002口香糖、可乐0003可乐、口香糖、薯片 以上面的订单为例&#xf…

elasticsearch使用记录

参考文章&#xff1a;https://elasticsearch-py.readthedocs.io/en/v8.8.2/ 参考文章&#xff1a;https://cuiqingcai.com/6214.html 参考文章&#xff1a;https://www.cnblogs.com/cupleo/p/13953890.html elasticsearch版本&#xff1a;8.8.2(软件包发行版) python版本&#…

MySQL 读写分离

目录 一、什么是读写分离&#xff1f; 二、为什么要读写分离呢&#xff1f; 三、什么时候要读写分离&#xff1f; 四、主从复制与读写分离 五、MySQL 读写分离原理 六、企业 使用MySQL 读写分离场景 1&#xff09;基于程序代码内部实现 2&#xff09;基于中间代理层实现…

React重新渲染的触发机制及其优化策略

React是一个用于构建用户界面的JavaScript库&#xff0c;它的核心特点之一是使用虚拟DOM&#xff08;Virtual DOM&#xff09;来实现高效的组件渲染。那组件重新渲染的机制是如何呢&#xff1f;基于这些机制&#xff0c;如果进行优化呢&#xff1f; 虚拟DOM是一个用JavaScript对…

"科技与狠活"企业级无代码开发MES系统,一周实现数字化

随着科技的不断发展&#xff0c;企业级无代码开发平台成为了一种新型的解决方案&#xff0c;能够有效降低软件开发门槛&#xff0c;提升开发效率。在制造业领域&#xff0c;MES系统&#xff08;Manufacturing Execution System&#xff09;作为一种关键的生产管理工具&#xff…
最新文章