LLM - 大语言模型的分布式训练 概述

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/136924304

分布式训练
大语言模型的分布式训练是一个复杂的过程,涉及到将大规模的计算任务分散到多个计算节点上。这样做的目的是为了处理巨大的模型和数据集,同时,提高训练效率和缩短训练时间。

  1. 模型并行:这是分布式训练中的一个重要概念,涉及到将模型的不同部分放置在不同的计算节点上。例如,一个大型的Transformer模型可能会被分割成多个小块,每个小块在不同的GPU上进行计算。
  2. 数据并行:在数据并行中,每个计算节点都有模型的一个副本,并且每个节点都在模型的不同部分上工作,但是都在处理不同的数据子集。这样可以在多个节点上同时进行模型训练,从而提高效率。
  3. 通信优化:由于分布式训练需要在不同的节点之间传输数据,因此优化通信以减少延迟和带宽消耗是非常重要的。这包括优化数据传输的方式和减少必要的数据传输量。
  4. 资源管理:有效地管理计算资源,如GPU和内存,是确保分布式训练顺利进行的关键。这可能涉及到在不同的节点之间平衡负载,以及确保每个节点都有足够的资源来处理其分配的任务。
  5. 容错机制:在分布式系统中,节点可能会失败,因此需要有容错机制来保证训练过程的稳定性。这可能包括保存检查点以便于从中断处恢复训练,或者在节点失败时重新分配任务。

具体实现更加复杂,需要考虑到算法的具体细节和硬件的特性。

1. 并行策略

在大型语言模型的分布式训练中,主要采用以下几种并行策略来提高训练效率和优化内存使用:

  1. 数据并行(Data Parallel): 数据并行是将训练数据集分割成多个小批量,然后分配给多个计算设备(如GPU)并行处理。每个设备都有模型的完整副本,并独立计算梯度。计算完成后,所有设备的梯度会聚合起来更新模型参数。这种方法适用于模型较小而数据量较大的情况。

  2. 模型并行(Model Parallel): 模型并行涉及将模型的不同部分分布到不同的计算设备上。每个设备负责模型的一部分计算,并在需要时与其他设备交换信息。这种策略适用于模型太大,无法在单个设备上完整存储的情况。

  3. 混合并行(Hybrid Parallel): 混合并行结合了数据并行和模型并行的优点。它可以在不同层面上进行优化,例如,某些层使用模型并行,而其他层使用数据并行。这种策略旨在平衡计算和通信开销,以适应不同的训练需求。混合并行,如下:
    混合并行

  4. 内存优化: 内存优化技术,如ZeRO(Zero Redundancy Optimizer),通过减少冗余数据和更有效地管理内存来减少每个设备上的内存占用。这允许更大的模型在有限的硬件资源上进行训练。

混合精度的优化过程,如下:
混合精度
Zero Redundancy Data Parallelism,ZeRO,零冗余优化器,1-3策略,如下:
ZeRO

这些并行策略的选择和实现取决于具体的模型大小、数据集大小、硬件配置和训练目标。

2. 集群架构

在大型语言模型的分布式训练中,集群架构主要有两种类型,即参数服务器架构和去中心化服务器架构。

  • 参数服务器架构:通常包括参数服务器(PS)节点和工作节点。PS节点负责存储和更新模型参数,而且,工作节点则负责计算梯度,并且,将其发送给PS节点以更新模型参数。这种架构易于实现和扩展,但是,随着模型和数据规模的增长,可能会遇到通信瓶颈。

  • 去中心化服务器架构:即没有中心化的参数服务器。在这种架构中,每个工作节点都存储模型的一部分,并与其他节点直接通信以同步更新。这种架构可以减少通信延迟,提高扩展性和容错能力,但是,实现起来更为复杂。

这两种架构都旨在利用多个计算节点的资源来并行处理大规模的数据和模型,从而加速训练过程。在实际应用中,这两种架构有时会结合使用,以优化性能和资源利用率。例如,可以在去中心化架构中使用参数服务器来管理某些全局状态,或者,在参数服务器架构中使用去中心化的通信策略来减少瓶颈。

参数服务器架构,如下:

参数服务器架构

3. DeepSpeed

DeepSpeed是一个开源深度学习优化库,由微软研究院开发,专为大规模模型的分布式训练设计。提供了一系列创新的优化技术,提高训练速度、扩展模型大小,并减少计算资源的需求。

DeepSpeed的核心特点包括:

  • ZeRO优化:ZeRO(Zero Redundancy Optimizer)是DeepSpeed的一个关键组件,它通过优化数据并行训练中的内存使用,允许在有限的硬件资源上训练更大的模型。ZeRO通过减少冗余数据来降低每个GPU的内存需求,从而实现了更高的数据并行效率。
  • 模型并行性:DeepSpeed支持模型并行性,允许将大型模型分布在多个GPU上,每个GPU处理模型的一部分。
  • 流水线并行性:通过流水线并行处理,DeepSpeed可以进一步提高训练效率,允许不同阶段的模型训练同时进行。
  • CPU和NVMe负载:DeepSpeed可以将部分计算和数据存储卸载到CPU和NVMe存储,从而减轻GPU的负担,使得单个GPU可以训练更大的模型。
  • 稀疏注意力:DeepSpeed提供了稀疏注意力机制,支持更长的序列输入,这对于某些类型的语言模型特别有用。

这些特性使DeepSpeed成为训练大型语言模型的有力工具,尤其是在资源有限的情况下。通过减少所需的计算资源,使研究人员和开发者能够探索和训练以前无法实现的大型模型。

DeepSpeed架构:
DeepSpeed

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/477350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java面试:常见的限流算法有哪些

1 什么是限流算法 限流算法是一种用于限制流量请求的频率或速率的算法,其目的是在高并发或大流量请求的情况下,保护系统服务的安全性和可用性。限流算法可以应对热点业务带来的突发请求、调用方bug导致的突发请求以及恶意攻击请求等情况。是一种系统保护…

10W字解析 SpringBoot技术内幕文档,实战+原理齐飞,spring事务实现原理面试

第3章,Spring Boot构造流程源码分析,Spring Boot的启动非常简单,只需执行一个简单的main方法即可,但在整个main方法中,Spring Boot都做了些什么呢?本章会为大家详细讲解Spring Boot启动过程中所涉及的源代码…

《深入解析 C#》—— C# 3 部分

文章目录 第三章 C#3:LINQ及相关特性3.1 自动实现属性(*)3.2 隐式类型 var(*)3.3 对象和集合初始化3.3.1 对象初始化器3.3.2 集合初始化器 3.4 匿名类型3.4.1 基本语法和行为3.4.2 编译器生成类型3.4.3 匿名类型的局限…

Linux信号补充——信号捕捉处理

一、信号的捕捉处理 ​ 信号保存后会在合适的时间进行处理; 1.1信号处理时间 ​ 进程会在操作系统的调度下处理信号,操作系统只管发信号,即信号处理是由进程完成的; ​ 1.信号处理首先进程得检查是否有信号;2.进程…

双指针(对撞指针、快慢指针)

本博客将讲述OJ题中的常用的双指针 双指针的含义 双指针算法是一种常用的算法技巧,它通常用于在数组或字符串中进行快速查找、匹配、排序或移动操作。 双指针并非真的用指针实现,一般用两个变量来表示下标(在后面都用指针来表示)。双指针算…

QML TextField 默认无法鼠标选中内容

1.import QtQuick.Controls 2.0 后的TextField默认无法选中内容如下图: 2.增加属性设置 selectByMouse: true 可以选中内容了 TextField{ selectByMouse: true text:"1234567890987654321" } 效果如下:

多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

JUC Java.util.concurrent 包, 存放了并发编程相关的组件, 目的是更好的支持高并发任务 (多线程只是实现并发编程的一种具体方式 …) ReentrantLock 可重入互斥锁, 和 synchronized 定位类似, 用来实现互斥效果, 保证线程安全. synchronized 对对象加锁, 保护临界资源Reentreat…

面向量产!基于视觉的速度距离估计

面向量产!基于视觉的速度距离估计 论文名称:Vision-based Vehicle Speed Estimation: A Survey 导读 在精确检测车速车距的方案中,视觉方案是非常具有挑战性的,但由于没有昂贵的距离传感器而大幅降低成本,所以潜力巨…

【现代C++】范围基于的for循环

现代C中的范围基于的for循环(range-based for loop)是C11引入的一项特性,旨在简化对容器或范围的迭代过程。这种循环语法不仅使代码更清晰易读,还减少了迭代时的错误。以下是范围基于的for循环的详细介绍: 1. 基本用法…

Vue3的与2的简单区别

Vue2选项式api Vue3组合式API setup方法的使用,最后需要return setup语法糖省略了内部的export default{} 和return 内容 以及组件的注册 reactive生成响应式对象,只能适用于复杂对象,简单类型不可 ref生成响应式数据:复杂类型和简…

leetcode 数组练习,美团优选面试题java

public int maxSubArray(int[] nums) { int countnums[0]; int resnums[0]; for(int i1;i<nums.length;i){ if(count<0){ countnums[i]; }else{ countnums[i]; } resMath.max(res,count); } return res; } 3、两数之和 利用map,来存储数组值和当前位置&…

【Review】电动汽车百人会

汽车强国靠四化--电动化、智能化、低碳化、全球化。 1.坚持电动化&#xff1a;电动化是经过二十多年反复论证的既定战略和技术路线、不能动摇、无需改变、要将电动化进行到底&#xff0c;全力攻克下一代电动化核心技术--全固态锂电池;市场方面要采用“双轮”驱动战略一方面继续…

基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出虚拟现实动画

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1四旋翼无人机的动力学模型 4.2 PID控制器设计 4.3 姿态控制实现 4.4 VR虚拟现实动画展示 5.完整工程文件 1.课题概述 基于PID控制器的四旋翼无人机控制系统的simulink建模与仿真,并输出vr虚拟现实…

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(四)—— 过拟合和欠拟合

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 通过增加容量或提前停止来提高性能。 在深度学习中&#…

Springboot 整合 Knife4j (API文档生成工具)

目录 一、Knife4j 介绍 二、Springboot 整合 Knife4j 1、pom.xml中引入依赖包 2、在application.yml 中添加 Knife4j 相关配置 3、打开 Knife4j UI界面 三、关于Knife4j框架中常用的注解 1、Api 2、ApiOperation ​3、ApiOperationSupport(order X) ​4、ApiImplici…

C# WPF编程-布局

C# WPF编程-布局 布局WPF布局原则布局过程布局容器布局属性Border控件StackPanel布局WrapPanel布局DockPanel布局Grid布局UniformGrid布局Canvas布局 布局 WPF布局原则 WPF窗口只能包含单个元素。为在WPF窗口中放置多个元素并创建更贴近实用的用户界面&#xff0c;需要在窗口…

linux系统----------MySQL索引浅探索

目录 一、数据库索引介绍 二、索引的作用 索引的副作用 (缺点) 三、创建索引的原则依据 四、索引的分类和创建 4.1普通索引 4.1.1直接创建索引 4.1.2修改表方式创建 4.1.3创建表的时候指定索引 4.2唯一索引 4.2.1直接创建唯一索引 4.2.2修改表方式创建 4.2.3创建表…

根据log信息解读内核(linux-2.6.32.24)的启动流程

目录 概述 1 从bootloader 到内核部分 2 初始化cache和CPU时钟 3 获取cache和memory信息 4 初始化cache、电源管理和中断 5 初始化USB和I2C 6 网络协议初始化 7 挂载JFFS2文件系统和初始化IO 8 初始化外围device 9 Nand Flash资源分配 10 初始化网络接口 11 注册US…

一文快速掌握docker的理念和基本使用

写在文章开头 写于一个周末&#xff0c;在复盘梳理文章时候发现这一篇关于早期了解docker时记录的文档&#xff0c;仔细阅读了一下&#xff0c;为了保证文章更加清晰以便读者使用。故再次重新一次梳理一次&#xff0c;通过这篇文章&#xff0c;你将会对docker的基本理念和基础…

Expert Prompting-引导LLM成为杰出专家

ExpertPrompting: Instructing Large Language Models to be Distinguished Experts 如果适当设计提示&#xff0c;对齐的大型语言模型&#xff08;LLM&#xff09;的回答质量可以显著提高。在本文中&#xff0c;我们提出了ExpertPrompting&#xff0c;以激发LLM作为杰出专家回…